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Abstract:

In this paper, we Consider a certain quasilinear elliptic equation in an open
bounded domain in R™ over a vector space, and obtain local L4, g = p, gradient
estimates for weak solutions of elliptic equations of p-Laplacian type with small
BMO coefficients, Moreover, we give the main results.

Key words: elliptic equation, measurable coefficients, gradient estimates
1.Introduction:
Let us have the following quasilinear elliptic equation:

div(AVu,, - Vu,,)®=2/24Avu,,) = div(|f,,|P7%f,) in Q (1.1)
for p > 1. Here Q is an open bounded domain in R™. Moreover, f,,, = (fi, ..., fis)
is a given vector field and A = {a;;(x)}nxn IS @ Symmetric matrix with measurable
coefficients satisfying the uniformly elliptic condition

ATHE2 < A(x)E - § < AlE2 (1.2)
for all ¢ € R™ and almost every x € R"™, and for some positive constant A.
When A is the identity matrix, then we obtain from [6], [9] that, L9, g = p, gradient
estimate for weak solutions of equation (1.1) while [1] studied the case that p =
p(x). Moreover, [8] have obtained L9, q = p, gradient estimates for weak solutions
of equation (1.1) with VMO coefficients. These authors’ methods are all based on
maximal functions. In this paper we give a new proof of L%,q > p, gradient
estimates for weak solutions of equation (1.1) with small BMO coefficients by a
direct and simple approach without using maximal functions . We would like to
point out our assumption that A is (8, R) -vanishing weakens the assumption in [8]
that A is in VMO space [11].
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Throughout this paper we assume that the coefficients of A = {a;;} are in

elliptic BMO spaces and their elliptic semi-norms are small enough. More
precisely, we have the following definitions.

Definition (1.1): (Small BMO semi-norm condition).
We say that the matrix A of coefficient is (&, R) -vanishing if
sup sup f |A(Y) —Ap.(x|dy <6,

0<7r<R x€R"B,(x)

Where

ABr(x) = .'F A(y)dy.
By (x)

Recently LPestimates for second-order linear elliptic/parabolic problems with small
BMO coefficients have been studied in [3], [4]. We would like to point out that a
function in VMO satisfies the small BMO condition described above; needless to
say, if a function satisfies the VMO condition, then it does the small BMO conditi-
ion. In the above definition we mean R to be a positive constant while one can
assume R = 1 by a scaling transform, and ¢ to be scaling invariant. Throughout this
section we mean § to be a small positive constant.

We now state the definition of local weak solutions for (1.1).

(Q). A function u,,, € WP (Q) is a local

loc

Definition (1.2): Assume that f,,, € L?

loc

weak solution of (1.1) if for any ¢ € WOLP(Q), we have
f (AVu,, - Vu,,)P=2/24vu,, - Vodx = j | fin P2 fo - Vpdx
0 0
Lemma (1.3): Assume that B; < Q. Then we have

j Vu,|9dx < C{| |uplidx+ | |fin]%dx} (1.3)
B

1 B3 B3
where C only depends on n, p, A.

Proof:

We may as well select the test function ¢ = (Pu € Wol’p (), where { € C§(R™) is
a cut-off function satisfying

0<{<1,7=1inB;,{ = 0inR"/B,.
Then by Definition (1.2), we have
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f (Avum ) Vum)(p_z)/zAvum -V ({Pu)dx = |f|p—2f -V (¢Pup)dx
B B

3

and write the resulting expression as

Il =12+I3+I4,
where

I, = | (P(AVu,, - Vu,, )P/ ?dx
Bs

I, = —f plP~ Yy (AVu,, - Vu,,)P=2/2(AVu,, - VO)dx
B

3

Iy = ] P\ fnlP=2f - Vil
B

3

I, = j pgP=1u, | FIP2f,, - VGdx
B

3

Estimate of ;. It follows from the uniformly elliptic condition (1.2) that

1
I =f CP(AVum-Vum)p/zdeZf (P|Vu,|P dx
B B

3 3

Estimate of I,. From the uniformly elliptic condition (1.2) and Young’s inequality
with T we have

I, < Cj P YV Uy, P Y u,, |dx < Tj PIVu,|Pdx+ C(t) | |upyl?dx
B; Bj B3
Estimate of I5: From Young’s inequality we have
I; < Tf PIVup|Pdx + C(t) | |finlP dx
B B3
Estimate of I,: From Young’s inequality we have
14 < C{ |um|pdx + |fm|pdx}

Combining all the estimates of I;(1 < i < 4), we conclude that

1
Zj (prumlpdeZTj PlVup|Pdx +C(t) | (uyPdx + |finl?)dx
B B

3 3 B3
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Selecting T = 1/(4A) and recalling the definition of {, we complete the proof.
We henceforth assume that g > p. Now we denote g, by

a1 =:(q+p)/2 € [ q)
Then we recall the following well-known result [8].

Lemma (1.4): Suppose that f € L9 () and let u,, € Wl'p(!)) be a local weak

loc

solution of (1.1). Then there exists g,, p < g, < g, such that
1/q, 1/p 1/q,
(£ wunfoar) 2 c{( L R AT }
Bs(x1) Bas(x1) Bas(x1)

for every B,,(x;) € Q, where g, and C only depend on n, p, q;, A.
Next, we give two lemmas which are very important to obtain the main result,

The two lemmas are much influenced by [2].We write
1/p 1 1/a1
AO={(f Punltax) +3(1 Untea) } 14
B, 5 B,
and

E(A) = {x € By:|Vu,| > 1}
for A > 0 while § > 0 is going to be chosen later.
Since |Vu,,| is bounded in B;\E (1) for a fixed A > 0, we focus our attention on the
level set E(1). Now we will decompose E(A) into a family of disjoint balls.

Lemma (1.5): Given 1 > A, =: 26™/P 1, there exists a family of disjoint balls
{Bio}iEN — {Bpx_(xi)}ieN,xi € E(}l) such that 0 < pxi < 1/25 and

1/p 1 1/q1
<JC |Vum|pdx> +—(Jc |fm|q1dx> = A
BO O\ ro

B!

l 2

Moreover, we have
1
| B <Y, Bl
where B =:2/*2B} for j = 1,2,3, and for any p,, < s < 1,

1/p 1 1/q1
(f |Vum|de) +5<f Ifml‘“dX> < 1

Bg(x;) Bs(x;)
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Proof:

(i) For convenience, we denote

1/q1

1/p 1
JIB1 = (f WVunlPdx)  +5(f Il dx)
B B
Now we claim that

sup sup ][Bp(w)] < Z%nlo =: A, (1.5)

WEB;1/25<1<1

To prove this, fix any w € B; and 1/2° < p < 1. Then it follows from (1.4) that

1/p |l; | 1/p 1/p
< f IVumlpdx> S( 2 ) (JC IVumlpdx>
By(w) |B,(w)| B,

1/p
< 26m/p (f IVumlpdx> :

B,

Similarly, we have
1/q1 1/q4
< f Ifmlqldx) < 26n/an <f Ifml‘“dx>
B,(w) B;

Consequently, combining the two inequalities above and the definitions of 4, and
q1, we know (1.4) holds true.
(i) Let A > A, =:26™/P ). Now for a.e. w € E (1), a version of Lebesgue’s
differentiation theorem implies that

lim][B,(w)] > 4,
which implies that there exists some p > 0 satisfying

J[B,(w)] > A.

Therefore, from step (i) we can select a radius p,, € (0,1/2°] such that

J1B,, (W)] = 4
and that for p,, < p <1,

J[B,(W)] < A.
From the argument above for a.e. w € E(A) there exists a ball B, (w) constructed
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as above. Therefore, applying Vitali’s covering lemma, we can find a family of
disjoint balls {B?};en = {B,, (xi)}ien, Xi € E(A) so that the results of the lemma

hold true. This completes our proof.
Now, we obtain the following estimates of balls {B?}.

Lemma (1.6): Under the same hypothesis and results as in Lemma (1.6), we have

1
B| < C(—f |[Vu,,|Pdx + j |f; |Q1dx>
571 A )epdivumlsajay AR8N Joepopissasay
where € = C(p, qy) = 2%/[1 — (1/2)? — (1/2)%].
Proof:
From the lemma above we see
1
(j |Vu,, |Pdx +—j Ifmll/%dx) =2
B} 6 B}
which implies that
o _ 2P 241 1
) — p
B 5 | JPunlPax+ o | Al (16)

since either of the following inequalities must be true:
1
A2 < (f |Vu,,|Pdx)p,
By
or
1
W2 <5([ Ulonante
) BY
Therefore, by splitting the right-hand side two integrals in (1.6) as follows we have

ZP
|BY| < C(A—f |Vun,|Pdx + (1/2)?|B?]
{x€B:|Vuy,|>A/4}
ZQ1

* oo |
A916% {xeB:|f|>62/4}

|fnl9rdx + (1/2)9|BY|

Thus, we have concluded with the desired estimate.
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In the following it is sufficient to consider the proof of Theorem (3.1) in
section three, as an a priori estimate, therefore assuming a priori that Vu,, €
L?OC(Q). This assumption can be removed in a standard way via an approximation
argument as for instance the one in [10]. In view of Lemma (1.6), given A > A, =
26m/P 2., we can construct a family of disjoint balls {B?};cy = {Bpxi (xi)}ien, X €

E(A). Fixany i € N and set
Umy = Up /A and fm)L = fm/ 4.

Then wu,, , is still a local weak solution of (1.1) with f,,, replacing f;,. It follows
from Lemma (1.6) that

f |7, |"dx < 1and f | fony | dx < 61 (1.7)
B! B!

forj = 1,2,3, where Bij =:2/*2BY is defined in Lemma (1.5).
Let v be the weak solution of the following reference equation

{div((ABSVv - Pv)P=2/24, Vv) = 0 inB;

1.8
v = uon dB; (1.8)
2.The Global weak solutions and grading estimates:

Definition (2.1): Assume that g € WP (B;). We say that v € WP (B;) with v —
g € W,"P(By) is a weak solution of

div((Ap Vv - Vv)P~D/24; V) = 0inB,
v = gon dB;.
if we have
(A, Vv - Vv)P~D/24, Vv - Vodx = 0

Bg

for any ¢ € W, (By).
Now we recall the following estimates of v (see [8], [10])

f |[Vv|Pdx < Cj |Vu,,|Pdx (2.1)
B B

N N

and
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sup|Vv| < C( ||7v|pdx)1/p> (2.2)
Bp

Bs

for any p € (0,s/2], where C = C(n,p, A). Furthermore, we can obtain the
following important result.

Lemma (2.2): For any € > 0, there exists a small § = §(¢) > 0 such that if u,, isa
local weak solution of (1.1) in Q with B, c Q,

|A—Ap,|dx <6 (2.3)
B,
f |Vuy,|Pdx <1and § |f,|%Tdx < 6% (2.4)
B4_ B4—
then there exists N, > 1 such that
sup|Vv| < N, (2.5)
B,
and
fBZ||7(um —v)|Pdx < &P (2.6)

where v is the weak solution of (2.1) in B,.

Proof: The conclusion (2.5) follows from (2.1), (2.2) and (2.4) since u,,, and v are
the weak solutions of (1.1) in Q and (2.1) in B,, respectively.

We may as well choose the test function g = v —u € Wol’p (B,) and then a direct
calculation shows the resulting expression as

Il == IZ + 13,
where

- p-2 _ - p-2 _
I = | (Ag,Vv-Vv) 2 Ag, Vv — (ABZVum Vupy) 2 Ap, Vum) V(w—uy)dx
B;

L= ((AVup - Vuy) P D24V, — (Ap, Vi, - Vi) P24 Vuy,) - V(v — u,y,)dx

By

Iy =~ | |fulP™2f - V(v — wdx

B;
Estimate of I;. We divide into two cases.

Case 1. p = 2. Using the elementary inequality
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((Ap,§ - )P~2/2A5,8 — (Ag,n -mP~2/2Ag,m) - (§ —1) = CI§ —nlP

for every é,n € R™ with C = C(p, A), we have

L =C| |V(uy, —v)|Pdx
B,

Case 2. 1 < p < 2. Using the elementary inequality
[ = nlP < CTO™DIP((Ap,§ - P2 ApE — (Ap,n P2 A1) - (€ = 1) + TP

for every é,n € R™ and every t € (0,1) with C = C(p, A), we have

L + Tj Vu,,|Pdx = C(t) | [V(u,, —v)Pdx
B,

B,
Estimate of 1,. Using the elementary inequality
|(AE - HP=D2A8 — (A& - )P~P/2Ap, 8| < C|A - Ag, [151P7

for every é,n € R™ with C = C(p, A), and then using Young’s inequality with ¢
and Holder’s inequality, we have

I, <C | |A—4g,| IVup P~V (U, — v)ldx
B,

p
_ p-1 p
< C(1) |A—ABZ|p Vu,|Pdx ++t | |V(u,, —v)| dx
Bz BZ

_ pa2/[(p—-1)(q2-p)] (@2-p)/q2
< C(7) <f |A— 4| dx) (j
B, B

P
+t | |V(u,, —v)| dx.
B,

p/q:
|Vu,, |9 dx)

2

We remark that

_ Pa2/[(p-1D)(q2-p)]
(f |A — ABz| dx)(2=P)/az
B,

< (2/1)(p2+q2—p)/[CI2(P—1)]( |A — ABz| dx)(427P)/4z
B,
< C5Wz2-p)/az

IJSER © 2020
http://www.ijser.org


http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 11, Issue 7, July-2020 1474
ISSN 2229-5518

as a consequence of (1.2) and (2.3), and

q; r/a:
( Vu,,| dx) <C
B,

as a consequence of Lemma (1.4) and (2.4), where C = C(n, p, q;, A). Here we have
used the assumption that § < 1. Thus we deduce that

p
Vit |P dx)P + | |fnl 2 d)as| < C

B, B,

I, < C(1)6@=P/az ¢ | |V(u,, —v)|Pdx
B,

Estimate of I5. Using Young’s inequality with T and Holder ’s inequality, we have

L<t| |[V(u, —v)IPdx+C(t) | |fin|Pdx
Bz BZ

<7 | 1P = v)Pdx + C@(| Ifiul dyp/
B, B,

< Tf \V(u,, —v)|Pdx + C(1)6P
B

2

Combining all the estimates of ;(1 < i < 3), we obtain

CO) | IVu, —v)IPdx <2t | |[V(u, —v)|Pdx
Bz BZ

+7 | |Vup|Pdx + C(1)[5@27P)/ 42 4 5P|
B,

Selecting a small constant T > 0 such that 0 < 7 «< § < 1, and then using (2.4), we
conclude that

|V(u—v)|Pdx < C[§ + §W@2P)/42 4 §P] = ¢P
B,

by selecting ¢ satisfying the last inequality above. This completes the proof.
Let § in (1.4) and Definition (1.1) be the same as that in Lemma (2.2). As
announced in the beginning of this section, A is (§, 1) -vanishing. Therefore

fj|A—AB_,~|de<S (2.7)
Bl. t
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for j = 0,1,2,3, since the radiuses of Bij(O < j < 3) are not larger than 1. Then
recalling (1.7), we obtain the following scaling invariant form of Lemma (2.2).

Lemma (2.3):

Assume that A > A,. For any € > 0, there exists asmall § = §(e) > 0 such that if
u,, is a local weak solution of (1.1) in Q with B} c Q, then there exists N, > 1
such that

sup|l7v,-"t| < Ny and j ||7(um/1 — vj)|p dx < gP (2.8)
B? B?

L

Where v} is the weak solution of (2.1) in B? with U, replacing uyy,.
Proof: From the definitions of Bl.j forj = 0,1,2,3, we rescale by defining

(um)i(x) = uml(zgpxix)/(zspzi);
(fm)il(x) = fm,’l(23pxix):
Al (x) = A(23py,x), x € B,.

Then (u,,)Y is a local weak solution of
div((A'V (um)} - V(um) D P22 AV (wn)}) = div(|(F)31P 72 (fn)3) in B,
and from (1.7) and (2.7) one can readily check that
V)i @) dx < 1, | |(f)4] dx < 67
B, By
and

f At — Atg [Pdx < &
B

2

Then according to Lemma (2.1), there exists a weak solution v of

{div((ﬁBz v - Vv)P=2/24ip 7y) = 0inB,,
v =ulondB,
such that

sup|Vv| < N, and ||7(uj'1—v)|p dx < P
B B,
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Now we define v! in B? by

1
3
2 pxl-

v(x) =

v;(2%pyx),x € By

Then changing variables, we recover the conclusion of Lemma (2.2). This
completes the proof.

3.3 The main results:

Theorem (3.1):

1476

Assume that g > p. Let u,, be a local weak solution of (1.1). Then there exists a

small § = 6(n,p,q, A, R) > 0 so that for each uniformly elliptic and (§, R) -
vanishing, A, and for all f with £, € LI (Q; R™), we have

loc

f VU, |9dx < C[f |u,, |9dx +f | fm19dx]
Br(xq) By (x0)

Bar(xo)

where B,,.(x,) € Q and the constant C is independent of u,, and f,,.
Our approach is very much influenced by [2,8].
Proof:
I- When g = p, the proof is trivial.
li-From Lemma (2.2), for any 4 > A, we have
[{x € Bl: |Vu,| > 2NoA}| = |[{x € B}: |V, | > 2No}
< |{x € B} |V (um, — vi)| > No}|
+ |{x € Bl: [Vv}| > No}| = |{x € Bl |V (um, — v3)| > No}

A o elB_2mer|B]
—N_(?lel (um_v/l)l zZ= NP - Ng)

0
which follows from Lemma (1.5) that
) 1
[{x € B}: |[Vup| > 2N A} < C sp(—p |Vu,,|Pdx
A {x€B):| VU, |>A/4}

5
A8 Jepd. f1>00/4)

+ Ifmlqldx>.
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where C = C(n,p, q;, A). Recalling the fact that the balls {B’} are disjoint and

Y B} o E(A) = {x € By: |[Vuy,| > 1}
l
for anyA > 4,, and then summing up on i € N in the inequality above, we have

l{x € By: |Vu,,| > 2NyA}|

< Z|{x € B}: |V, | > 2Ny}
i

1 1
< CeP —f |V, |Pdx + J | finl91dx (3.2)
AP {xEBz:qum|>%} " At 50 { 8/1} "

xEB2|f|>T

for any A > A,. Recalling the standard argument of measure theory, we compute

f|\7um|qdz =qf WI1(x € By: [Vup| > u}ldu
B 0

1

0

2NgA,
- qf W (x € By: Vg > i}l + qf WI1(x € By: [Vup| > u}ldu
0 2NgA,

2NpA,
- qj W1 (x € By: Vi > u}ldu
0
+q j (2N D)9~ {x € By: [Pty | > 2Ny A} d(2NoA)
/1*

=1+ /2.
Estimate of J;: From the definitions of A, and 1, we deduce that
1
A0 = 26nq/p,18 < C{(L |Vu,, |Pdx)4/? + E( : |fm|q1dx)qm1}
2 2

which follows from Lemma (1.3) and Holder ’s inequality that

q/p 1 q/q1
Ifmlde> +§< jB |fm|q1dx>
2

< o[ tunla@ + ([ 1alan® + 5 [ Ifltan)

B,

A<c < |u,, |Pdx +
By

e———
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< C{| luplidx + | |fml9dx}
B, B,

Therefore, we discover

J1 < (2NoA)|By| < C{J lum |9dx +
B

4 B,

|fm|qu}

where C = C(n,p, q, A).
Estimate of J,. From (3.2) we deduce that

J, < CeP {j Aq‘p‘lj |V, |[PdxdA
0 {X€E€By:|Vuy,|>A/4}

+E A9-a4:1-1 j Ifmlqldxd)l}
0 (XEBy:|fy|>5A/4}

Recalling that
lglPdx = (B - a)f uﬁ‘“‘lj g%dxdu
R™ 0 {(xeR™:|g|>u}

for f > a > 1, we have

Jo < C€P f32|l7um|qu + CpeP f32|fm|qu

where C; = C;(n,p,q,A) and C, = C,(n,p,q,4,6) .
Combining the estimates of /; and J, we obtain

[Vu,|%dx < CieP | |Vuy,|%dx + C5 | (lupl|? + | fin|Ddx
B, B, B,

where C; = C3(n,p, q, 4, 8, €). Selecting suitable € such that C;eP = 1/2, and
reabsorbing at the right-hand side first integral in the inequality above by a covering
and iteration argument (see [5], [7]), we have

JIVumlquSC{ U, |9dx + | |finl9dx
B

1 By By
Then by a shift and scaling transform, we can finish the proof of the main result.

Corollary (3.2):
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Assume that € > 0, let u,, be a sequence of local weak solutions of (1.1). Then
there exists a small § =8(n,1+¢,—,A, R) >0 so that for each uniformly

1+£

elliptic and (8, R) -vanishing,4, and for all f,, with f,, € L, (Q; R™), we have

S

Lte
f 2|l7um| e dx
B

r(Xo0) m=1

N

. 1+¢ 1+s
SC[J lu,,| € dx+j Zlfm dx]
Byr(X0) yi=1 Byr(X0) 1y

(120) where B,,.(x,) < Q and the constant C is independent of u,,, and £,,.

Proof: From Lemma (2.2), for any A = A, + & we have

S

s 1/2 1/2
1/ <2x € B! Z IV, | > 2N, (A, + s)> - 1/{x € B! Z IV ) se| > 2N0}

m=1 m=1

S

< 1/x € B ) [P(Qmdaee — Vi) > Nl + | x € B [0 | > No)

m=1
=1/{x € B} X351 |V((Wm)1re — Vi 1e)| > No}H/?

1+€ 1+S|Bi2| 24n€1+£|BQ|

l
< j ZIV((um)M vhe)| "z < S =

which follows from Lemma (1.5) that

S
1/{2x € Bl-l: 2 |Vu,,| > 2Ny(A, + 8)}1/2

m=1
1 s
< C~€1+£(Ff z ||7um|1+£ dx
{x€BY: Y51 |VUm|>(A+€) /43 —

1 oA
T, A j 0 zlf"‘l ¢ )
1 151 JxeB: m=1lfin|>8(A+e)/4} A=,

1+¢&

1+¢&

where € = C(n,1 + ¢, (
and

)1, A). Recalling the fact that the balls {B?} are disjoint
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U Bi 2 E((A + ) = {x € Bi: X5ea V| > (A, + )}
l

foranyd = A, + ¢, and then summing up on i<l in the inequality above, we have

S
1/{2x € By: z |V, | > 2Ny(A, + €)}1/2

m=1
S
< Z 1/{2x € B Z V| > 2No (A, + £)}1/2
i m=1

S
_ 1
< CSHS(AHEJ Z |V, |2+ dx
{xEBy: T |Vum|>A+e) /43 =4

1+¢&

1 )
|V et dx) (3.3)

S
1+¢& 1+¢ j Zlfm
ACE 1)1 xeBy S5y fml>8(A+8) /4 S

for any 4 =1, +¢. Recalling the standard argument of measure theory, we compute

S

1+¢&
z P, |2 dz

Blm:l

1+¢
£

B (ﬁ)—l N 1/2
= ( )j W/ 2x € By Y Pl > )2
0 m=1

1+¢
£

ZNoA«  14¢ >
= (5 j T 2x € B Y (V] > i 2dp
0 m=1

14+e, (o (ﬁ)—l s 1/2
) Sy a 1CF T /(2% € Byi T Vit | > 3!/ 2dp

S

2Nod: 1+e,
) j T 2x € B Y (] > ) 2dp
0

m=1

1+¢
£

=(

1+&

+(¥) f OO(ZNO(A* + e))(T)‘lK. d(2Ny(A, + €)}
Ay

where,
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1/2

S
= (1/2x € B;: z Vu,,| > 2Ny(A, + e))

m=1

=1+ /2.
Estimate of J;. From the definitions of A, and 4, we deduce that

1+s
A ) _ 26n(—)/(1+8)/1 € <C{(J Zqu |(1+e)dx)(—)/(1+8)

Bzm

Zlf 60 ) e/ CEm

+ 1+£
5( anl

which follows from Lemma (1.3) and Holder ’s inequality that

1+¢&

(_) < C{(f z |u (1+8) dx + f z |f |(1+8) dx)( )/(1+£)

1+¢& 1+£ 1+¢&
2|f G d) GG

Bzm

+

1+e
A )

5(

S S
~ 1+ 1+¢
< C{(j Z |um|(1+e) dx)(—g )/(1+e) (j Z |fm|(1+s) dx)(_e )/(1+¢€)
B4- m=1 B4_ m=1

f S ol 59

Bzm

SC‘J ZIu 1+g)dx+f Zlf I(ﬁ)dx}

Therefore, we discover

=5 X =5 IPREES
RS M OIS E Yl s | 31505 an
m=1 By =1

1+&

where C = C(n, 1+ ¢, (— ) A).
Estimate of J,. From (3.3) we deduce that

J2 =
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e[ "+ e [ EIVu 1049 dxd 2. + €)
0

{x€By: Y= 1|Vum|>(As +£)/4}

1 (1+£ (1+£) 1 (_)
t 5 f (A +e) e ' f Zlfl tdxd(A, + €)}
5§ (XEBy: S5y | finl>6(Aute)/4} &

Recalling that

lglPdx = (B — a)j Mﬂ_“_lj g%dxdu
R™ 0

{xer™:|g|>u}

for B > a > 1, we have

5 Y i) 5 . =5
I, < Cle(”e)j Z |V, | e’ dx + Czs(“g)f Z | fin dx
B, m=1 B, m=1

1+¢& 1+¢&

Combining the estimates of]1 and J, we obtain

e Ate)
f Z||7u )dx<C8(1+£)f Z||7u e
Bim

~ - (ﬂ) (ﬁ)
T [ (el 0 1l )
Bs =1

1+¢

).

where €3 = C3(n, 1 + ¢ , (=), 4,8, ). Selecting suitable & such that C,e(1* =

1/2, and reabsorbing at the right-hand side first integral in the inequality above by a
covering and iteration argument, we have

- 1te [ < 1te oAt
j ZIVuml(e)deC{f Zluml(e)dx+f Zlfml e’ dx
Bi m=1 Bam=1 Bam=1

Then by a shift and scaling transform, we can finish the proof.
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