Local and Global weak solutions and Gradient Estimates for Nonlinear Elliptic Equations

Yousri S. M. Yasin ${ }^{1}$ \& Habeeb I. A. Ibrahim ${ }^{1,2}$
${ }^{1}$ Department of Mathematics - Faculty of Education - University of Zalingei -Sudan
${ }^{2}$ Department of Mathematics - College of Science \& Arts in Elmiznab - Qassim University Saudia Arabia.

Abstract

: In this paper, we Consider a certain quasilinear elliptic equation in an open bounded domain in \mathbb{R}^{n} over a vector space, and obtain local $L^{q}, q \geq p$, gradient estimates for weak solutions of elliptic equations of p-Laplacian type with small BMO coefficients, Moreover, we give the main results.

Key words: elliptic equation, measurable coefficients, gradient estimates

1.Introduction:

Let us have the following quasilinear elliptic equation:

$$
\begin{equation*}
\left.\operatorname{div}\left(A \nabla u_{m} \cdot \nabla u_{m}\right)^{(p-2) / 2} A \nabla u_{m}\right)=\operatorname{div}\left(\left|f_{m}\right|^{p-2} f_{m}\right) \quad \text { in } \Omega \tag{1.1}
\end{equation*}
$$

for $p>1$. Here Ω is an open bounded domain in \mathbb{R}^{n}. Moreover, $f_{m}=\left(f_{m}^{1}, \ldots, f_{m}^{1}\right)$ is a given vector field and $A=\left\{a_{i j}(x)\right\}_{n \times n}$ is a symmetric matrix with measurable coefficients satisfying the uniformly elliptic condition

$$
\begin{equation*}
\Lambda^{-1}|\xi|^{2} \leq A(x) \xi \cdot \xi \leq \Lambda|\xi|^{2} \tag{1.2}
\end{equation*}
$$

for all $\xi \in \mathbb{R}^{n}$ and almost every $x \in \mathbb{R}^{n}$, and for some positive constant Λ. When A is the identity matrix, then we obtain from [6], [9] that, $L^{q}, q \geq p$, gradient estimate for weak solutions of equation (1.1) while [1] studied the case that $p=$ $p(x)$. Moreover, [8] have obtained $L^{q}, q \geq p$, gradient estimates for weak solutions of equation (1.1) with VMO coefficients. These authors' methods are all based on maximal functions. In this paper we give a new proof of $L^{q}, q \geq p$, gradient estimates for weak solutions of equation (1.1) with small BMO coefficients by a direct and simple approach without using maximal functions. We would like to point out our assumption that A is (δ, R)-vanishing weakens the assumption in [8] that A is in VMO space [11].

Throughout this paper we assume that the coefficients of $A=\left\{a_{i j}\right\}$ are in elliptic BMO spaces and their elliptic semi-norms are small enough. More precisely, we have the following definitions.

Definition (1.1): (Small BMO semi-norm condition).
We say that the matrix A of coefficient is (δ, R)-vanishing if

$$
\sup _{0<r \leq R} \sup _{x \in \mathbb{R}^{n} B_{r}(x)} f\left|A(y)-\bar{A}_{B_{r}(x)}\right| d y \leq \delta,
$$

Where

$$
\bar{A}_{B_{r}(x)}=f_{B_{r}(x)} A(y) d y
$$

Recently L^{p} estimates for second-order linear elliptic/parabolic problems with small BMO coefficients have been studied in [3], [4]. We would like to point out that a function in VMO satisfies the small BMO condition described above; needless to say, if a function satisfies the VMO condition, then it does the small BMO conditiion. In the above definition we mean R to be a positive constant while one can assume $R=1$ by a scaling transform, and δ to be scaling invariant. Throughout this section we mean δ to be a small positive constant.

We now state the definition of local weak solutions for (1.1).
Definition (1.2): Assume that $f_{m} \in L_{\mathrm{loc}}^{p}(\Omega)$. A function $u_{m} \in W_{\mathrm{loc}}^{1, p}(\Omega)$ is a local weak solution of (1.1) if for any $\varphi \in W_{0}^{1, p}(\Omega)$, we have

$$
\int_{\Omega}\left(A \nabla u_{m} \cdot \nabla u_{m}\right)^{(p-2) / 2} A \nabla u_{m} \cdot \nabla \varphi d x=\int_{\Omega}\left|f_{m}\right|^{p-2} f_{m} \cdot \nabla \varphi d x
$$

Lemma (1.3): Assume that $B_{3} \subset \Omega$. Then we have

$$
\begin{equation*}
\int_{B_{1}}\left|\nabla u_{m}\right|^{q} d x \leq C\left\{\int_{B_{3}}\left|u_{m}\right|^{q} d x+\int_{B_{3}}\left|f_{m}\right|^{q} d x\right\} \tag{1.3}
\end{equation*}
$$

where C only depends on n, p, Λ.

Proof:

We may as well select the test function $\varphi=\zeta^{p} u \in W_{0}^{1, p}(\Omega)$, where $\zeta \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ is a cut-off function satisfying

$$
0 \leq \zeta \leq 1, \zeta \equiv 1 \mathrm{in} B_{1}, \zeta \equiv 0 \operatorname{in} \mathbb{R}^{n} / B_{2}
$$

Then by Definition (1.2), we have

$$
\int_{B_{3}}\left(A \nabla u_{m} \cdot \nabla u_{m}\right)^{(p-2) / 2} A \nabla u_{m} \cdot \nabla\left(\zeta^{p} u\right) d x=\int_{B_{3}}|f|^{p-2} f \cdot \nabla\left(\zeta^{p} u_{m}\right) d x
$$

and write the resulting expression as

$$
I_{1}=I_{2}+I_{3}+I_{4},
$$

where

$$
\begin{gathered}
I_{1}=\int_{B_{3}} \zeta^{p}\left(A \nabla u_{m} \cdot \nabla u_{m}\right)^{p / 2} d x \\
I_{2}=-\int_{B_{3}} p \zeta^{p-1} u_{m}\left(A \nabla u_{m} \cdot \nabla u_{m}\right)^{(p-2) / 2}\left(A \nabla u_{m} \cdot \nabla \zeta\right) d x \\
I_{3}=\int_{B_{3}} \zeta^{p}\left|f_{m}\right|^{p-2} f \cdot \nabla u_{m} d x \\
I_{4}=\int_{B_{3}} p \zeta^{p-1} u_{m}|f|^{p-2} f_{m} \cdot \nabla \zeta d x
\end{gathered}
$$

Estimate of I_{1}. It follows from the uniformly elliptic condition (1.2) that

$$
I_{1}=\int_{B_{3}} \zeta^{p}\left(A \nabla u_{m} \cdot \nabla u_{m}\right)^{p / 2} d x \geq \frac{1}{\Lambda} \int_{B_{3}} \zeta^{p}\left|\nabla u_{m}\right|^{p} d x
$$

Estimate of I_{2}. From the uniformly elliptic condition (1.2) and Young's inequality with τ we have

$$
I_{2} \leq C \int_{B_{3}} \zeta^{p-1}\left|\nabla u_{m}\right|^{p-1}\left|u_{m}\right| d x \leq \tau \int_{B_{3}} \zeta^{p}\left|\nabla u_{m}\right|^{p} d x+C(\tau) \int_{B_{3}}\left|u_{m}\right|^{p} d x
$$

Estimate of I_{3} : From Young's inequality we have

$$
I_{3} \leq \tau \int_{B_{3}} \zeta^{p}\left|\nabla u_{m}\right|^{p} d x+C(\tau) \int_{B_{3}}\left|f_{m}\right|^{p} d x
$$

Estimate of I_{4} : From Young's inequality we have

$$
I_{4} \leq C\left\{\int_{B_{3}}\left|u_{m}\right|^{p} d x+\int_{B_{3}}\left|f_{m}\right|^{p} d x\right\}
$$

Combining all the estimates of $I_{i}(1 \leq i \leq 4)$, we conclude that

$$
\frac{1}{\Lambda} \int_{B_{3}} \zeta^{p}\left|\nabla u_{m}\right|^{p} d x \leq 2 \tau \int_{B_{3}} \zeta^{p}\left|\nabla u_{m}\right|^{p} d x+C(\tau) \int_{B_{3}}\left(u_{m}{ }^{p} d x+\left|f_{m}\right|^{p}\right) d x
$$

Selecting $\tau=1 /(4 \Lambda)$ and recalling the definition of ζ, we complete the proof. We henceforth assume that $q>p$. Now we denote q_{1} by

$$
q_{1}=:(q+p) / 2 \in(p, q) .
$$

Then we recall the following well-known result [8].
Lemma (1.4): Suppose that $f \in L^{q_{1}}(\Omega)$ and let $u_{m} \in W_{\text {loc }}^{1, p}(\Omega)$ be a local weak solution of (1.1). Then there exists $q_{2}, p<q_{2}<q_{1}$ such that

$$
\left(\underset{B_{s}\left(x_{1}\right)}{f}\left|\nabla u_{m}\right|^{q_{2}} d x\right)^{1 / q_{2}} \leq C\left\{\left(\underset{B_{2 s}\left(x_{1}\right)}{f}\left|\nabla u_{m}\right|^{p} d x\right)^{1 / p}+\left(\underset{B_{2 s}\left(x_{1}\right)}{f}\left|f_{m}\right|^{q_{1}} d x\right)^{1 / q_{1}}\right\}
$$

for every $B_{2 s}\left(x_{1}\right) \subset \Omega$, where q_{2} and C only depend on n, p, q_{1}, Λ.
Next, we give two lemmas which are very important to obtain the main result,
The two lemmas are much influenced by [2]. We write

$$
\begin{equation*}
\lambda_{0}=\left\{\left(f_{B_{2}}\left|\nabla u_{m}\right|^{p} d x\right)^{1 / p}+\frac{1}{\delta}\left(f_{B_{2}}\left|f_{m}\right|^{q_{1}} d x\right)^{1 / q_{1}}\right\} \tag{1.4}
\end{equation*}
$$

and

$$
E(\lambda)=\left\{x \in B_{1}:\left|\nabla u_{m}\right|>\lambda\right\}
$$

for $\lambda>0$ while $\delta>0$ is going to be chosen later.
Since $\left|\nabla u_{m}\right|$ is bounded in $B_{1} \backslash E(\lambda)$ for a fixed $\lambda>0$, we focus our attention on the level set $E(\lambda)$. Now we will decompose $E(\lambda)$ into a family of disjoint balls.

Lemma (1.5): Given $\lambda \geq \lambda_{*}=: 2^{6 n / p} \lambda_{0}$, there exists a family of disjoint balls $\left\{B_{i}^{0}\right\}_{i \in \mathbb{N}}=\left\{B_{\rho_{x_{i}}}\left(x_{i}\right)\right\}_{i \in \mathbb{N}}, x_{i} \in E(\lambda)$ such that $0<\rho_{x_{i}}<1 / 2^{5}$ and

$$
\left(f_{B_{i}^{0}}\left|\nabla u_{m}\right|^{p} d x\right)^{1 / p}+\frac{1}{\delta}\left(f_{B_{i}^{0}}\left|f_{m}\right|^{q_{1}} d x\right)^{1 / q_{1}}=\lambda
$$

Moreover, we have

$$
E(\lambda) \subset \bigcup_{i \in \mathbb{N}} B_{i}^{1},
$$

where $B_{i}^{j}=: 2^{j+2} B_{i}^{0}$ for $j=1,2,3$, and for any $\rho_{x_{i}}<s<1$,

$$
\left(\underset{B_{s}\left(x_{i}\right)}{f}\left|\nabla u_{m}\right|^{p} d x\right)^{1 / p}+\frac{1}{\delta}\left(\underset{B_{s}\left(x_{i}\right)}{ }\left|f_{m}\right|^{q_{1}} d x\right)^{1 / q_{1}} \leq \lambda
$$

Proof:

(i) For convenience, we denote

$$
J[B]=\left(f_{B}\left|\nabla u_{m}\right|^{p} d x\right)^{1 / p}+\frac{1}{\delta}\left(f_{B}\left|f_{m}\right|^{q_{1}} d x\right)^{1 / q_{1}}
$$

Now we claim that

$$
\begin{equation*}
\sup _{w \in B_{1} 1 / 2^{5} \leq \lambda \leq 1} \sup J\left[B_{\rho}(w)\right] \leq 2^{\frac{6 n}{p}} \lambda_{0}=: \lambda_{*} \tag{1.5}
\end{equation*}
$$

To prove this, fix any $w \in B_{1}$ and $1 / 2^{5} \leq \rho \leq 1$. Then it follows from (1.4) that

$$
\begin{aligned}
\left(f_{B_{\rho}(w)}\left|\nabla u_{m}\right|^{p} d x\right)^{1 / p} & \leq\left(\frac{\left|B_{2}\right|}{\left|B_{\rho}(w)\right|}\right)^{1 / p}\left(f_{B_{2}}\left|\nabla u_{m}\right|^{p} d x\right)^{1 / p} \\
& \leq 2^{6 n / p}\left(f_{B_{2}}\left|\nabla u_{m}\right|^{p} d x\right)^{1 / p}
\end{aligned}
$$

Similarly, we have

$$
\left(\underset{B_{\rho}(w)}{f}\left|f_{m}\right|^{q_{1}} d x\right)^{1 / q_{1}} \leq 2^{6 n / q_{1}}\left(f_{B_{2}}\left|f_{m}\right|^{q_{1}} d x\right)^{1 / q_{1}}
$$

Consequently, combining the two inequalities above and the definitions of λ_{0} and q_{1}, we know (1.4) holds true.
(ii) Let $\lambda \geq \lambda_{*}=: 2^{6 n / p} \lambda_{0}$. Now for a.e. $w \in E(\lambda)$, a version of Lebesgue's differentiation theorem implies that

$$
\lim _{\rho \rightarrow 0} J\left[B_{\rho}(w)\right]>\lambda
$$

which implies that there exists some $\rho>0$ satisfying

$$
\mathrm{J}\left[B_{\rho}(w)\right]>\lambda
$$

Therefore, from step (i) we can select a radius $\rho_{w} \in\left(0,1 / 2^{5}\right]$ such that

$$
J\left[B_{\rho_{w}}(w)\right]=\lambda
$$

and that for $\rho_{w}<\rho \leq 1$,

$$
J\left[B_{\rho}(w)\right]<\lambda .
$$

From the argument above for a.e. $w \in E(\lambda)$ there exists a ball $B_{\rho_{w}}(w)$ constructed
as above. Therefore, applying Vitali's covering lemma, we can find a family of disjoint balls $\left\{B_{i}^{0}\right\}_{i \in \mathbb{N}}=\left\{B_{\rho_{x_{i}}}\left(x_{i}\right)\right\}_{i \in \mathbb{N}}, x_{i} \in E(\lambda)$ so that the results of the lemma hold true. This completes our proof.
Now, we obtain the following estimates of balls $\left\{B_{i}^{0}\right\}$.
Lemma (1.6): Under the same hypothesis and results as in Lemma (1.6), we have

$$
\left|B_{i}^{0}\right| \leq C\left(\frac{1}{\lambda^{p}} \int_{\left\{x \in B_{i}^{0}:\left|\nabla u_{m}\right|>\lambda / 4\right\}}\left|\nabla u_{m}\right|^{p} d x+\frac{1}{\lambda^{q_{1}} \delta^{q_{1}}} \int_{\left\{x \in B_{i}^{0}:|f|>\delta \lambda / 4\right\}}\left|f_{m}\right|^{q_{1}} d x\right)
$$

where $C=C\left(p, q_{1}\right)=2^{q_{1}} /\left[1-(1 / 2)^{p}-(1 / 2)^{q_{1}}\right]$.

Proof:

From the lemma above we see

$$
\left(\int_{B_{i}^{0}}\left|\nabla u_{m}\right|^{p} d x+\frac{1}{\delta} \int_{B_{i}^{0}}\left|f_{m}\right|^{1 / q_{1}} d x\right)=\lambda
$$

which implies that

$$
\begin{equation*}
\left|B_{i}^{0}\right| \leq \frac{2^{p}}{\lambda^{p}} \int_{B_{i}^{0}}\left|\nabla u_{m}\right|^{p} d x+\frac{2^{q_{1}}}{\lambda^{q_{1}} \delta^{q_{1}}} \int_{B_{i}^{0}}\left|f_{m}\right|^{\frac{1}{q_{1}}} d x \tag{1.6}
\end{equation*}
$$

since either of the following inequalities must be true:

$$
\lambda / 2 \leq\left(\int_{B_{i}^{0}}\left|\nabla u_{m}\right|^{p} d x\right)^{\frac{1}{p}},
$$

or

$$
\lambda / 2 \leq \frac{1}{\delta}\left(\int_{B_{i}^{0}}\left|f_{m}\right|^{q_{1}} d x\right)^{1 / q_{1}}
$$

Therefore, by splitting the right-hand side two integrals in (1.6) as follows we have

$$
\begin{aligned}
& \left|B_{i}^{0}\right| \leq C\left(\frac{2^{p}}{\lambda^{p}} \int_{\left\{x \in B_{i}^{0}:\left|\nabla u_{m}\right|>\lambda / 4\right\}}\left|\nabla u_{m}\right|^{p} d x+(1 / 2)^{p}\left|B_{i}^{0}\right|\right. \\
& \quad+\frac{2^{q_{1}}}{\lambda^{q_{1}} \delta^{q_{1}}} \int_{\left\{x \in B_{i}^{0}:|f|>\delta \lambda / 4\right\}}\left|f_{m}\right|^{q_{1}} d x+(1 / 2)^{q_{1}}\left|B_{i}^{0}\right|
\end{aligned}
$$

Thus, we have concluded with the desired estimate.

In the following it is sufficient to consider the proof of Theorem (3.1) in section three, as an a priori estimate, therefore assuming a priori that $\nabla u_{m} \in$ $L_{\text {loc }}^{q}(\Omega)$. This assumption can be removed in a standard way via an approximation argument as for instance the one in [10]. In view of Lemma (1.6), given $\lambda \geq \lambda_{*}=$ $2^{6 n / p} \lambda_{0}$, we can construct a family of disjoint balls $\left\{B_{i}^{0}\right\}_{i \in \mathbb{N}}=\left\{B_{\rho_{x_{i}}}\left(x_{i}\right)\right\}_{i \in \mathbb{N}}, x_{i} \in$ $E(\lambda)$. Fix any $i \in \mathbb{N}$ and set

$$
u_{m_{\lambda}}=u_{m} / \lambda \text { and } f_{m_{\lambda}}=f_{m} / \lambda .
$$

Then $u_{m_{\lambda}}$ is still a local weak solution of (1.1) with $f_{m_{\lambda}}$ replacing f_{m}. It follows from Lemma (1.6) that

$$
\begin{equation*}
\int_{B_{i}^{j}}\left|\nabla u_{m_{\lambda}}\right|^{p} d x \leq 1 \text { and } \int_{B_{i}^{j}}\left|f_{m_{\lambda}}\right|^{q_{1}} d x \leq \delta^{q_{1}} \tag{1.7}
\end{equation*}
$$

for $j=1,2,3$, where $B_{i}^{j}=: 2^{j+2} B_{i}^{0}$ is defined in Lemma (1.5).
Let v be the weak solution of the following reference equation

$$
\left\{\begin{array}{l}
\operatorname{div}\left(\left(\bar{A}_{B_{s}} \nabla v \cdot \nabla v\right)^{(p-2) / 2} \bar{A}_{B_{s}} \nabla v\right)=0 \text { in } B_{s} \tag{1.8}\\
v=u \text { on } \partial B_{s}
\end{array}\right.
$$

2.The Global weak solutions and grading estimates:

Definition (2.1): Assume that $g \in W^{1, p}\left(B_{s}\right)$. We say that $v \in W^{1, p}\left(B_{s}\right)$ with v $g \in W_{0}^{1, p}\left(B_{s}\right)$ is a weak solution of

$$
\left\{\begin{array}{l}
\operatorname{div}\left(\left(\bar{A}_{B_{s}} \nabla v \cdot \nabla v\right)^{(p-2) / 2} \bar{A}_{B_{s}} \nabla v\right)=0 \operatorname{in} B_{s}, \\
v=g o n \partial B_{s} .
\end{array}\right.
$$

if we have

$$
\int_{B_{s}}\left(\bar{A}_{B_{s}} \nabla v \cdot \nabla v\right)^{(p-2) / 2} \bar{A}_{B_{s}} \nabla v \cdot \nabla \varphi d x=0
$$

for any $\varphi \in W_{0}^{1, p}\left(B_{s}\right)$.
Now we recall the following estimates of v (see [8], [10])

$$
\begin{equation*}
\int_{B_{s}}|\nabla v|^{p} d x \leq C \int_{B_{s}}\left|\nabla u_{m}\right|^{p} d x \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.\sup _{B_{\rho}}|\nabla v| \leq C\left(\int_{B_{s}}|\nabla v|^{p} d x\right)^{1 / p}\right) \tag{2.2}
\end{equation*}
$$

for any $\rho \in(0, s / 2]$, where $C=C(n, p, \Lambda)$. Furthermore, we can obtain the following important result.

Lemma (2.2): For any $\varepsilon>0$, there exists a small $\delta=\delta(\varepsilon)>0$ such that if u_{m} is a local weak solution of (1.1) in Ω with $B_{4} \subset \Omega$,

$$
\begin{gather*}
\int_{B_{2}}\left|A-\bar{A}_{B_{2}}\right| d x \leq \delta \tag{2.3}\\
f_{B_{4}}\left|\nabla u_{m}\right|^{p} d x \leq 1 \text { and } f_{B_{4}}\left|f_{m}\right|^{q_{1}} d x \leq \delta^{q_{1}} \tag{2.4}
\end{gather*}
$$

then there exists $N_{0}>1$ such that

$$
\begin{equation*}
\sup _{B_{1}}|\nabla v| \leq N_{0} \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{B_{2}}\left|\nabla\left(u_{m}-v\right)\right|^{p} d x \leq \varepsilon^{p} \tag{2.6}
\end{equation*}
$$

where v is the weak solution of (2.1) in B_{2}.
Proof: The conclusion (2.5) follows from (2.1), (2.2) and (2.4) since u_{m} and v are the weak solutions of (1.1) in Ω and (2.1) in B_{2}, respectively.
We may as well choose the test function $\varphi=v-u \in W_{0}^{1, p}\left(B_{2}\right)$ and then a direct calculation shows the resulting expression as

$$
I_{1}=I_{2}+I_{3},
$$

where

$$
\begin{gathered}
\left.I_{1}=\int_{B_{2}}\left(\bar{A}_{B_{2}} \nabla v \cdot \nabla v\right)^{\frac{p-2}{2}} \bar{A}_{B_{2}} \nabla v-\left(\bar{A}_{B_{2}} \nabla u_{m} \cdot \nabla u_{m}\right)^{\frac{p-2}{2}} \bar{A}_{B_{2}} \nabla u_{m}\right) \cdot \nabla\left(v-u_{m}\right) d x \\
I_{2}=\int_{B_{2}}\left(\left(\bar{A} \nabla u_{m} \cdot \nabla u_{m}\right)^{(p-2) / 2} \bar{A} \nabla u_{m}-\left(\bar{A}_{B_{2}} \nabla u_{m} \cdot \nabla u_{m}\right)^{(p-2) / 2} \bar{A}_{B_{2}} \nabla u_{m}\right) \cdot \nabla\left(v-u_{m}\right) d x \\
I_{3}=-\int_{B_{2}}\left|f_{m}\right|^{p-2} f \cdot \nabla(v-u) d x
\end{gathered}
$$

Estimate of I_{1}. We divide into two cases.
Case 1. $p \geq 2$. Using the elementary inequality

$$
\left(\left(\bar{A}_{B_{2}} \xi \cdot \xi\right)^{(p-2) / 2} \bar{A}_{B_{2}} \xi-\left(\bar{A}_{B_{2}} \eta \cdot \eta\right)^{(p-2) / 2} \bar{A}_{B_{2}} \eta\right) \cdot(\xi-\eta) \geq C|\xi-\eta|^{p}
$$

for every $\xi, \eta \in \mathbb{R}^{n}$ with $C=C(p, \Lambda)$, we have

$$
I_{1} \geq C \int_{B_{2}}\left|\nabla\left(u_{m}-v\right)\right|^{p} d x
$$

Case $2.1<p<2$. Using the elementary inequality

$$
|\xi-\eta|^{p} \leq C \tau^{(p-2) / p}\left(\left(\bar{A}_{B_{2}} \xi \cdot \xi\right)^{(p-2) / 2} \bar{A}_{B_{2}} \xi-\left(\bar{A}_{B_{2}} \eta \cdot \eta\right)^{(p-2) / 2} \bar{A}_{B_{2}} \eta\right) \cdot(\xi-\eta)+\tau|\eta|^{p}
$$

for every $\xi, \eta \in \mathbb{R}^{n}$ and every $\tau \in(0,1)$ with $C=C(p, \Lambda)$, we have

$$
I_{1}+\tau \int_{B_{2}}\left|\nabla u_{m}\right|^{p} d x \geq C(\tau) \int_{B_{2}}\left|\nabla\left(u_{m}-v\right)\right|^{p} d x
$$

Estimate of I_{2}. Using the elementary inequality

$$
\left|(A \xi \cdot \xi)^{(p-2) / 2} A \xi-\left(\bar{A}_{B_{2}} \xi \cdot \xi\right)^{(p-2) / 2} \bar{A}_{B_{2}} \xi\right| \leq C\left|A-\bar{A}_{B_{2}}\right||\xi|^{p-1}
$$

for every $\xi, \eta \in \mathbb{R}^{n}$ with $C=C(p, \Lambda)$, and then using Young's inequality with τ and Hölder's inequality, we have

$$
\begin{gathered}
I_{2} \leq C \int_{B_{2}}\left|A-\bar{A}_{B_{2}}\right|\left|\nabla u_{m}\right|^{p-1}\left|\nabla\left(u_{m}-v\right)\right| d x \\
\leq C(\tau) \int_{B_{2}}\left|A-\bar{A}_{B_{2}}\right|^{\frac{p}{p-1}}\left|\nabla u_{m}\right|^{p} d x++\tau \int_{B_{2}}\left|\nabla\left(u_{m}-v\right)\right|^{p} d x \\
\leq C(\tau)\left(\int_{B_{2}}\left|A-\bar{A}_{B_{2}}\right|^{p q_{2} /\left[(p-1)\left(q_{2}-p\right)\right]} d x\right)^{\left(q_{2}-p\right) / q_{2}}\left(\int_{B_{2}}\left|\nabla u_{m}\right|^{q_{2}} d x\right)^{p / q_{2}} \\
+\tau \int_{B_{2}}\left|\nabla\left(u_{m}-v\right)\right|^{p} d x .
\end{gathered}
$$

We remark that

$$
\begin{gathered}
\left(\int_{B_{2}}\left|A-\bar{A}_{B_{2}}\right|^{p q_{2} /\left[(p-1)\left(q_{2}-p\right)\right]} d x\right)^{\left(q_{2}-p\right) / q_{2}} \\
\leq(2 \Lambda)^{\left(p^{2}+q_{2}-p\right) /\left[q_{2}(p-1)\right]}\left(\int_{B_{2}}\left|A-\bar{A}_{B_{2}}\right| d x\right)^{\left(q_{2}-p\right) / q_{2}} \\
\leq C \delta^{\left(q_{2}-p\right) / q_{2}}
\end{gathered}
$$

as a consequence of (1.2) and (2.3), and

$$
\left.\left.\left(\int_{B_{2}}\left|\nabla u_{m}\right|^{q_{2}} d x\right)^{p / q_{2}} \leq C\left[\int_{B_{4}}\left|\nabla u_{m}\right|^{p} d x\right)^{1 / p}+\int_{B_{4}}\left|f_{m}\right|^{q_{1}} d x\right)^{1 / q_{1}}\right]^{p} \leq C
$$

as a consequence of Lemma (1.4) and (2.4), where $C=C\left(n, p, q_{1}, \Lambda\right)$. Here we have used the assumption that $\delta<1$. Thus we deduce that

$$
I_{2} \leq C(\tau) \delta^{\left(q_{2}-p\right) / q_{2}}+\tau \int_{B_{2}}\left|\nabla\left(u_{m}-v\right)\right|^{p} d x
$$

Estimate of I_{3}. Using Young's inequality with τ and Hölder's inequality, we have

$$
\begin{gathered}
I_{3} \leq \tau \int_{B_{2}}\left|\nabla\left(u_{m}-v\right)\right|^{p} d x+C(\tau) \int_{B_{2}}\left|f_{m}\right|^{p} d x \\
\leq \tau \int_{B_{2}}\left|\nabla\left(u_{m}-v\right)\right|^{p} d x+C(\tau)\left(\int_{B_{2}}\left|f_{m}\right|^{q_{1}} d x\right)^{p / q_{1}} \\
\quad \leq \tau \int_{B_{2}}\left|\nabla\left(u_{m}-v\right)\right|^{p} d x+C(\tau) \delta^{p}
\end{gathered}
$$

Combining all the estimates of $I_{i}(1 \leq i \leq 3)$, we obtain

$$
\begin{aligned}
& C(\tau) \int_{B_{2}}\left|\nabla\left(u_{m}-v\right)\right|^{p} d x \leq 2 \tau \int_{B_{2}}\left|\nabla\left(u_{m}-v\right)\right|^{p} d x \\
& \quad+\tau \int_{B_{2}}\left|\nabla u_{m}\right|^{p} d x+C(\tau)\left[\delta^{\left(q_{2}-p\right) / q_{2}}+\delta^{p}\right]
\end{aligned}
$$

Selecting a small constant $\tau>0$ such that $0<\tau \ll \delta<1$, and then using (2.4), we conclude that

$$
\int_{B_{2}}|\nabla(u-v)|^{p} d x \leq C\left[\delta+\delta^{\left(q_{2}-p\right) / q_{2}}+\delta^{p}\right]=\varepsilon^{p}
$$

by selecting δ satisfying the last inequality above. This completes the proof. Let δ in (1.4) and Definition (1.1) be the same as that in Lemma (2.2). As announced in the beginning of this section, A is $(\delta, 1)$-vanishing. Therefore

$$
\begin{equation*}
\int_{B_{i}^{j}}\left|A-\bar{A}_{B_{i}^{j}}\right| d x \leq \delta \tag{2.7}
\end{equation*}
$$

for $j=0,1,2,3$, since the radiuses of $B_{i}^{j}(0 \leq j \leq 3)$ are not larger than 1 . Then recalling (1.7), we obtain the following scaling invariant form of Lemma (2.2).

Lemma (2.3):

Assume that $\lambda \geq \lambda_{*}$. For any $\varepsilon>0$, there exists a small $\delta=\delta(\varepsilon)>0$ such that if u_{m} is a local weak solution of (1.1) in Ω with $B_{i}^{3} \subset \Omega$, then there exists $N_{0}>1$ such that

$$
\begin{equation*}
\sup _{B_{i}^{2}}\left|\nabla v_{\lambda}^{i}\right| \leq N_{0} \text { and } \int_{B_{i}^{2}}\left|\nabla\left(u_{m \lambda}-v_{\lambda}^{i}\right)\right|^{p} d x \leq \varepsilon^{p} \tag{2.8}
\end{equation*}
$$

Where v_{λ}^{i} is the weak solution of (2.1) in B_{i}^{2} with $u_{m_{\lambda}}$ replacing u_{m}.
Proof: From the definitions of B_{i}^{j} for $j=0,1,2,3$, we rescale by defining

$$
\left\{\begin{array}{l}
\left(u_{m}\right)_{\lambda}^{i}(x)=u_{m_{\lambda}}\left(2^{3} \rho_{x_{i}} x\right) /\left(2^{3} \rho_{z_{i}}\right) \\
\left(f_{m}\right)_{\lambda}^{i}(x)=f_{m_{\lambda}}\left(2^{3} \rho_{x_{i}} x\right) \\
A^{i}(x)=A\left(2^{3} \rho_{x_{i}} x\right), x \in B_{4}
\end{array}\right.
$$

Then $\left(u_{m}\right)_{\lambda}^{i}$ is a local weak solution of

$$
\operatorname{div}\left(\left(A^{i} \nabla\left(u_{m}\right)_{\lambda}^{i} \cdot \nabla\left(u_{m}\right)_{\lambda}^{i}\right)^{(p-2) / 2} A^{i} \nabla\left(u_{m}\right)_{\lambda}^{i}\right)=\operatorname{div}\left(\left|\left(f_{m}\right)_{\lambda}^{i}\right|^{p-2}\left(f_{m}\right)_{\lambda}^{i}\right) \text { in } B_{4}
$$

and from (1.7) and (2.7) one can readily check that

$$
\int_{B_{4}}\left|\nabla\left(u_{m}\right)_{\lambda}^{i}(x)\right|^{p} d x \leq 1, \int_{B_{4}}\left|\left(f_{m}\right)_{\lambda}^{i}\right|^{p} d x \leq \delta^{p}
$$

and

$$
\int_{B_{2}}\left|A^{i}-\bar{A}_{B_{2}}\right|^{p} d x \leq \delta
$$

Then according to Lemma (2.1), there exists a weak solution v of

$$
\left\{\begin{array}{l}
\operatorname{div}\left(\left({\overline{A^{i}}}_{B_{2}} \nabla v \cdot \nabla v\right)^{(p-2) / 2} \bar{A}_{B_{2}} \nabla v\right)=0 \operatorname{in} B_{2} \\
v=u_{\lambda}^{i} \text { on } \partial B_{2}
\end{array}\right.
$$

such that

$$
\sup _{B_{1}}|\nabla v| \leq N_{0} \text { and } \int_{B_{2}}\left|\nabla\left(u_{\lambda}^{i}-v\right)\right|^{p} d x \leq \varepsilon^{p}
$$

Now we define v_{λ}^{i} in B_{i}^{2} by

$$
v(x)=\frac{1}{2^{3} \rho_{x_{i}}} v_{\lambda}^{i}\left(2^{3} \rho_{x_{i}} x\right), x \in B_{2}
$$

Then changing variables, we recover the conclusion of Lemma (2.2). This completes the proof.

3.3 The main results:

Theorem (3.1):

Assume that $q \geq p$. Let u_{m} be a local weak solution of (1.1). Then there exists a small $\delta=\delta(n, p, q, \Lambda, R)>0$ so that for each uniformly elliptic and (δ, R) vanishing, A, and for all f with $f_{m} \in L_{\text {loc }}^{q}\left(\Omega ; \mathbb{R}^{n}\right)$, we have

$$
\begin{equation*}
\int_{B_{r}\left(x_{0}\right)}\left|\nabla u_{m}\right|^{q} d x \leq C\left[\int_{B_{4 r}\left(x_{0}\right)}\left|u_{m}\right|^{q} d x+\int_{B_{4 r}\left(x_{0}\right)}\left|f_{m}\right|^{q} d x\right] \tag{3.1}
\end{equation*}
$$

where $B_{4 r}\left(x_{0}\right) \subset \Omega$ and the constant C is independent of u_{m} and f_{m}.
Our approach is very much influenced by $[2,8]$.

Proof:

i- When $q=p$, the proof is trivial.
ii-From Lemma (2.2), for any $\lambda \geq \lambda_{*}$ we have

$$
\begin{gathered}
\left|\left\{x \in B_{i}^{1}:\left|\nabla u_{m}\right|>2 N_{0} \lambda\right\}\right|=\left|\left\{x \in B_{i}^{1}:\left|\nabla u_{m_{\lambda}}\right|>2 N_{0}\right\}\right| \\
\leq\left|\left\{x \in B_{i}^{1}:\left|\nabla\left(u_{m_{\lambda}}-v_{\lambda}^{i}\right)\right|>N_{0}\right\}\right| \\
+\left|\left\{x \in B_{i}^{1}:\left|\nabla v_{\lambda}^{i}\right|>N_{0}\right\}\right|=\left|\left\{x \in B_{i}^{1}:\left|\nabla\left(u_{m_{\lambda}}-v_{\lambda}^{i}\right)\right|>N_{0}\right\}\right| \\
\leq \frac{1}{N_{0}^{p}} \int_{B_{i}^{2}}\left|\nabla\left(u_{m}-v_{\lambda}^{i}\right)\right|^{p} d z \leq \frac{\varepsilon^{p}\left|B_{i}^{2}\right|}{N_{0}^{p}}=\frac{2^{4 n} \varepsilon^{p}\left|B_{i}^{0}\right|}{N_{0}^{p}}
\end{gathered}
$$

which follows from Lemma (1.5) that

$$
\begin{aligned}
\mid\left\{x \in B_{i}^{1}:\left|\nabla u_{m}\right|\right. & \left.>2 N_{0} \lambda\right\} \left\lvert\, \leq C\left(\varepsilon ^ { p } \left(\frac{1}{\lambda^{p}} \int_{\left\{x \in B_{i}^{0}:\left|\nabla u_{m}\right|>\lambda / 4\right\}}\left|\nabla u_{m}\right|^{p} d x\right.\right.\right. \\
& \left.+\frac{1}{\lambda^{q_{1}} \delta^{q_{1}}} \int_{\left\{x \in B_{i}^{0}:|f|>\delta \lambda / 4\right\}}\left|f_{m}\right|^{q_{1}} d x\right) .
\end{aligned}
$$

where $C=C\left(n, p, q_{1}, \Lambda\right)$. Recalling the fact that the balls $\left\{B_{i}^{0}\right\}$ are disjoint and

$$
\bigcup_{i \in \mathbb{N}} B_{i}^{1} \supset E(\lambda)=\left\{x \in B_{1}:\left|\nabla u_{m}\right|>\lambda\right\}
$$

for any $\lambda \geq \lambda_{*}$, and then summing up on $i \in \mathbb{N}$ in the inequality above, we have

$$
\begin{gather*}
\left|\left\{x \in B_{1}:\left|\nabla u_{m}\right|>2 N_{0} \lambda\right\}\right| \\
\leq \sum_{i}\left|\left\{x \in B_{i}^{1}:\left|\nabla u_{m}\right|>2 N_{0} \lambda\right\}\right| \\
\leq C \varepsilon^{p}\left(\frac{1}{\lambda^{p}} \int_{\left\{x \in B_{2}:\left|\nabla u_{m}\right|>\frac{\lambda}{4}\right\}}\left|\nabla u_{m}\right|^{p} d x+\frac{1}{\lambda^{q_{1}} \delta^{q_{1}}} \int_{\left\{x \in B_{2}:|f|>\frac{\delta \lambda}{4}\right\}}\left|f_{m}\right|^{q_{1}} d x\right) \tag{3.2}
\end{gather*}
$$

for any $\lambda \geq \lambda_{*}$. Recalling the standard argument of measure theory, we compute

$$
\begin{gathered}
\int_{B_{1}}\left|\nabla u_{m}\right|^{q} d z=q \int_{0}^{\infty} \mu^{q-1}\left|\left\{x \in B_{1}:\left|\nabla u_{m}\right|>\mu\right\}\right| d \mu \\
=q \int_{0}^{2 N_{0} \lambda_{*}} \mu^{q-1}\left|\left\{x \in B_{1}:\left|\nabla u_{m}\right|>\mu\right\}\right| d \mu+q \int_{2 N_{0} \lambda_{*}}^{\infty} \mu^{q-1}\left|\left\{x \in B_{1}:\left|\nabla u_{m}\right|>\mu\right\}\right| d \mu \\
=q \int_{0}^{2 N_{0} \lambda_{*}} \mu^{q-1}\left|\left\{x \in B_{1}:\left|\nabla u_{m}\right|>\mu\right\}\right| d \mu \\
+q \int_{\lambda_{*}}^{\infty}\left(2 N_{0} \lambda\right)^{q-1}\left|\left\{x \in B_{1}:\left|\nabla u_{m}\right|>2 N_{0} \lambda\right\}\right| d\left(2 N_{0} \lambda\right) \\
=: J_{1}+J_{2} .
\end{gathered}
$$

Estimate of J_{1} : From the definitions of λ_{*} and λ_{0} we deduce that

$$
\lambda_{*}^{q}=2^{6 n q / p} \lambda_{0}^{q} \leq C\left\{\left(\int_{B_{2}}\left|\nabla u_{m}\right|^{p} d x\right)^{q / p}+\frac{1}{\delta^{q}}\left(\int_{B_{2}}\left|f_{m}\right|^{q_{1}} d x\right)^{q / q_{1}}\right\}
$$

which follows from Lemma (1.3) and Hölder's inequality that

$$
\begin{aligned}
& \lambda_{*}^{q} \leq C\left[\left(\int_{B_{4}}\left|u_{m}\right|^{p} d x+\int_{B_{4}}\left|f_{m}\right|^{p} d x\right)^{q / p}+\frac{1}{\delta^{q}}\left(\int_{B_{2}}\left|f_{m}\right|^{q_{1}} d x\right)^{q / q_{1}}\right] \\
& \quad \leq C\left\{\left(\int_{B_{4}}\left|u_{m}\right|^{p} d x\right)^{q / p}+\left(\int_{B_{4}}\left|f_{m}\right|^{p} d x\right)^{q / p}+\frac{1}{\delta^{q}} \int_{B_{2}}\left|f_{m}\right|^{q} d x\right\} \\
& \text { ISSER ©2020} \\
& \text { http//www.iser.org }
\end{aligned}
$$

$$
\leq C\left\{\int_{B_{4}}\left|u_{m}\right|^{q} d x+\int_{B_{4}}\left|f_{m}\right|^{q} d x\right\}
$$

Therefore, we discover

$$
J_{1} \leq\left(2 N_{0} \lambda_{*}\right)^{q}\left|B_{1}\right| \leq C\left\{\int_{B_{4}}\left|u_{m}\right|^{q} d x+\int_{B_{4}}\left|f_{m}\right|^{q} d x\right\}
$$

where $C=C(n, p, q, \Lambda)$.
Estimate of J_{2}. From (3.2) we deduce that

$$
\begin{aligned}
J_{2} & \leq C \varepsilon^{p}\left\{\int_{0}^{\infty} \lambda^{q-p-1} \int_{\left\{x \in B_{2}:\left|\nabla u_{m}\right|>\lambda / 4\right\}}\left|\nabla u_{m}\right|^{p} d x d \lambda\right. \\
& \left.+\frac{1}{\delta^{q_{1}}} \int_{0}^{\infty} \lambda^{q-q_{1}-1} \int_{\left\{x \in B_{2}:\left|f_{m}\right|>\delta \lambda / 4\right\}}\left|f_{m}\right|^{q_{1}} d x d \lambda\right\}
\end{aligned}
$$

Recalling that

$$
\int_{\mathbb{R}^{n}}|g|^{\beta} d x=(\beta-\alpha) \int_{0}^{\infty} \mu^{\beta-\alpha-1} \int_{\left\{x \in \mathbb{R}^{n}:|g|>\mu\right\}} g^{\alpha} d x d \mu
$$

for $\beta>\alpha>1$, we have

$$
J_{2} \leq C_{1} \varepsilon^{p} \int_{B_{2}}\left|\nabla u_{m}\right|^{q} d x+C_{2} \varepsilon^{p} \int_{B_{2}}\left|f_{m}\right|^{q} d x
$$

where $C_{1}=C_{1}(n, p, q, \Lambda)$ and $C_{2}=C_{2}(n, p, q, \Lambda, \delta)$.
Combining the estimates of J_{1} and J_{2} we obtain

$$
\int_{B_{1}}\left|\nabla u_{m}\right|^{q} d x \leq C_{1} \varepsilon^{p} \int_{B_{2}}\left|\nabla u_{m}\right|^{q} d x+C_{3} \int_{B_{4}}\left(\left|u_{m}\right|^{q}+\left|f_{m}\right|^{q}\right) d x
$$

where $C_{3}=C_{3}(n, p, q, \Lambda, \delta, \varepsilon)$. Selecting suitable ε such that $C_{1} \varepsilon^{p}=1 / 2$, and reabsorbing at the right-hand side first integral in the inequality above by a covering and iteration argument (see [5], [7]), we have

$$
\int_{B_{1}}\left|\nabla u_{m}\right|^{q} d x \leq C\left\{\int_{B_{4}}\left|u_{m}\right|^{q} d x+\int_{B_{4}}\left|f_{m}\right|^{q} d x\right.
$$

Then by a shift and scaling transform, we can finish the proof of the main result.

Corollary (3.2):

Assume that $\varepsilon>0$, let u_{m} be a sequence of local weak solutions of (1.1). Then there exists a small $\delta=\delta\left(n, 1+\varepsilon, \frac{1+\varepsilon}{\varepsilon}, \Lambda, R\right)>0$ so that for each uniformly elliptic and (δ, R)-vanishing, A, and for all f_{m} with $f_{m} \in \frac{1+\varepsilon}{\frac{1+\varepsilon}{\varepsilon}}\left(\Omega ; \mathbb{R}^{n}\right)$, we have

$$
\begin{gathered}
\int_{B_{r}\left(x_{0}\right)} \sum_{m=1}^{s}\left|\nabla u_{m}\right|^{\frac{1+\varepsilon}{\varepsilon}} d x \\
\leq \tilde{C}\left[\int_{B_{4 r}\left(x_{0}\right)} \sum_{m=1}^{s}\left|u_{m}\right|^{\frac{1+\varepsilon}{\varepsilon}} d x+\int_{B_{4 r}\left(x_{0}\right)} \sum_{m=1}^{s}\left|f_{m}\right|^{\frac{1+\varepsilon}{\varepsilon}} d x\right]
\end{gathered}
$$

(120) where $B_{4 r}\left(x_{0}\right) \subset \Omega$ and the constant \tilde{C} is independent of u_{m} and f_{m}.

Proof: From Lemma (2.2), for any $\lambda=\lambda_{*}+\varepsilon$ we have

$$
\begin{aligned}
& 1 /\left(2 x \in B_{i}^{1}: \sum_{m=1}^{s}\left|\nabla u_{m}\right|>2 N_{0}\left(\lambda_{*}+\varepsilon\right)\right)^{1 / 2}=1 /\left\{x \in B_{i}^{1}: \sum_{m=1}^{s}\left|\nabla\left(u_{m}\right)_{\lambda_{*}+\varepsilon}\right|>2 N_{0}\right\}^{1 / 2} \\
& \leq 1 /\left\{x \in B_{i}^{1}: \sum_{m=1}^{s}\left|\nabla\left(\left(u_{m}\right)_{\lambda_{*}+\varepsilon}-v_{\lambda_{*}+\varepsilon}^{i}\right)\right|>N_{0}\right\}^{1 / 2}+\left|\left\{x \in B_{i}^{1}:\left|\nabla v_{\lambda_{*}+\varepsilon}^{i}\right|>N_{0}\right\}\right| \\
& =1 /\left\{x \in B_{i}^{1}: \sum_{m=1}^{s}\left|\nabla\left(\left(u_{m}\right)_{\lambda_{*}+\varepsilon}-v_{\lambda_{*}+\varepsilon}^{i}\right)\right|>N_{0}\right\}^{1 / 2} \\
& \leq \frac{1}{N_{0}^{1+\varepsilon}} \int_{B_{i}^{2}} \sum_{m=1}^{s}\left|\nabla\left(\left(u_{m}\right)_{\lambda_{*}+\varepsilon}-v_{\lambda_{*}+\varepsilon}^{i}\right)\right|^{1+\varepsilon} d z \leq \frac{\varepsilon^{1+\varepsilon}\left|B_{i}^{2}\right|}{N_{0}^{1+\varepsilon}}=\frac{2^{4 n} \varepsilon^{1+\varepsilon}\left|B_{i}^{0}\right|}{N_{0}^{1+\varepsilon}},
\end{aligned}
$$

which follows from Lemma (1.5) that

$$
\begin{gathered}
1 /\left\{2 x \in B_{i}^{1}: \sum_{m=1}^{s}\left|\nabla u_{m}\right|>2 N_{0}\left(\lambda_{*}+\varepsilon\right)\right\}^{1 / 2} \\
\leq \tilde{C} \varepsilon^{1+\varepsilon}\left(\frac{1}{\lambda^{1+\varepsilon}} \int_{\left\{x \in B_{i}^{0}: \sum_{m=1}^{s}\left|\nabla u_{m}\right|>\left(\lambda_{*}+\varepsilon\right) / 4\right\}} \sum_{m=1}^{s}\left|\nabla u_{m}\right|^{1+\varepsilon} d x\right. \\
\left.+\frac{1}{\lambda^{\left(\frac{1+\varepsilon}{\varepsilon}\right)_{1}} \delta^{\left(\frac{1+\varepsilon}{\varepsilon}\right)_{1}}} \int_{\left\{x \in B_{i}^{0}: \sum_{m=1}^{s}\left|f_{m}\right|>\delta\left(\lambda_{*}+\varepsilon\right) / 4\right\}} \sum_{m=1}^{s}\left|f_{m}\right|^{\left(\frac{1+\varepsilon}{\varepsilon}\right)_{1}} d x\right)
\end{gathered}
$$

where $\tilde{C}=\tilde{C}\left(n, 1+\varepsilon,\left(\frac{1+\varepsilon}{\varepsilon}\right)_{1}, \Lambda\right)$. Recalling the fact that the balls $\left\{B_{i}^{0}\right\}$ are disjoint and

$$
\bigcup_{i \in \mathbb{N}} B_{i}^{1} \supset E\left(\left(\lambda_{*}+\varepsilon\right)\right)=\left\{x \in B_{1}: \sum_{m=1}^{s}\left|\nabla u_{m}\right|>\left(\lambda_{*}+\varepsilon\right)\right\}
$$

for any $\lambda=\lambda_{*}+\varepsilon$, and then summing up on $i \in \square$ in the inequality above, we have

$$
\left.\begin{array}{c}
1 /\left\{2 x \in B_{1}: \sum_{m=1}^{s}\left|\nabla u_{m}\right|>2 N_{0}\left(\lambda_{*}+\varepsilon\right)\right\}^{1 / 2} \\
\leq \sum_{i} 1 /\left\{2 x \in B_{i}^{1}: \sum_{m=1}^{s}\left|\nabla u_{m}\right|>2 N_{0}\left(\lambda_{*}+\varepsilon\right)\right\}^{1 / 2} \\
\leq \tilde{C} \varepsilon^{1+\varepsilon}\left(\frac{1}{\lambda^{1+\varepsilon}} \int_{\left\{x \in B_{2}: \Sigma_{m=1}^{s}\left|\nabla u_{m}\right|>\left(\lambda_{*}+\varepsilon\right) / 4\right\}} \sum_{m=1}^{s}\left|\nabla u_{m}\right|^{1+\varepsilon} d x\right. \\
\frac{1}{\lambda^{\left(\frac{1+\varepsilon}{\varepsilon}\right)_{1}}} \delta^{\left(\frac{1+\varepsilon}{\varepsilon}\right)_{1}} \tag{3.3}
\end{array} \int_{\left\{x \in B_{2}: \Sigma_{m=1}^{s}\left|f_{m}\right|>\delta\left(\lambda_{*}+\varepsilon\right) / 4\right\}} \sum_{m=1}^{s}\left|f_{m}\right|^{\left(\frac{1+\varepsilon}{\varepsilon}\right)_{1}} d x\right) \quad, ~ \$
$$

for any $\lambda=\lambda_{s}+\varepsilon$. Recalling the standard argument of measure theory, we compute

$$
\begin{gathered}
\int_{B_{1}} \sum_{m=1}^{s}\left|\nabla u_{m}\right|^{\left(\frac{1+\varepsilon}{\varepsilon}\right)} d z \\
=\left(\frac{1+\varepsilon}{\varepsilon}\right) \int_{0}^{\infty} \mu^{\left(\frac{1+\varepsilon}{\varepsilon}\right)-1} 1 /\left\{2 x \in B_{1}: \sum_{m=1}^{s}\left|\nabla u_{m}\right|>\mu\right\}^{1 / 2} d \mu \\
=\left(\frac{1+\varepsilon}{\varepsilon}\right) \int_{0}^{2 N_{0} \lambda_{*}} \mu^{\left(\frac{1+\varepsilon}{\varepsilon}\right)-1} 1 /\left\{2 x \in B_{1}: \sum_{m=1}^{s}\left|\nabla u_{m}\right|>\mu\right\}^{1 / 2} d \mu \\
+\left(\frac{1+\varepsilon}{\varepsilon}\right) \int_{2 N_{0} \lambda_{*}}^{\infty} \mu^{\left(\frac{1+\varepsilon}{\varepsilon}\right)-1} 1 /\left\{2 x \in B_{1}: \sum_{m=1}^{s}\left|\nabla u_{m}\right|>\mu\right\}^{1 / 2} d \mu \\
= \\
\left(\frac{1+\varepsilon}{\varepsilon}\right) \int_{0}^{2 N_{0} \lambda_{*}} \mu^{\left(\frac{1+\varepsilon}{\varepsilon}\right)-1} 1 /\left\{2 x \in B_{1}: \sum_{m=1}^{s}\left|\nabla u_{m}\right|>\mu\right\}^{1 / 2} d \mu \\
\\
\quad+\left(\frac{1+\varepsilon}{\varepsilon}\right) \int_{\lambda_{*}}^{\infty}\left(2 N_{0}\left(\lambda_{*}+\varepsilon\right)\right)^{\left(\frac{1+\varepsilon}{\varepsilon}\right)-1} K . d\left(2 N_{0}\left(\lambda_{*}+\varepsilon\right)\right\}
\end{gathered}
$$

where,

$$
\begin{gathered}
K=\left(1 / 2 x \in B_{1}: \sum_{m=1}^{s}\left|\nabla u_{m}\right|>2 N_{0}\left(\lambda_{*}+\varepsilon\right)\right)^{1 / 2} \\
=: J_{1}+J_{2}
\end{gathered}
$$

Estimate of J_{1}. From the definitions of λ_{*} and λ_{0} we deduce that

$$
\begin{gathered}
\lambda_{*}^{\left(\frac{1+\varepsilon}{\varepsilon}\right)}=2^{6 n\left(\frac{1+\varepsilon}{\varepsilon}\right) /(1+\varepsilon)} \lambda_{0}^{\left(\frac{1+\varepsilon}{\varepsilon}\right)} \leq \tilde{C}\left\{\left(\int_{B_{2}} \sum_{m=1}^{s}\left|\nabla u_{m}\right|^{(1+\varepsilon)} d x\right)^{\left(\frac{1+\varepsilon}{\varepsilon}\right) /(1+\varepsilon)}\right. \\
\left.+\frac{1}{\delta^{\left(\frac{1+\varepsilon}{\varepsilon}\right)}}\left(\int_{B_{2}} \sum_{m=1}^{s}\left|f_{m}\right|^{\left(\frac{1+\varepsilon}{\varepsilon}\right)_{1}} d x\right)^{\left(\frac{1+\varepsilon}{\varepsilon}\right) /\left(\frac{1+\varepsilon}{\varepsilon}\right)_{1}}\right\}
\end{gathered}
$$

which follows from Lemma (1.3) and Hölder's inequality that

$$
\begin{gathered}
\lambda_{*}^{\left(\frac{1+\varepsilon}{\varepsilon}\right)} \leq \tilde{C}\left\{\left(\int_{B_{4}} \sum_{m=1}^{s}\left|u_{m}\right|^{(1+\varepsilon)} d x+\int_{B_{4}} \sum_{m=1}^{s}\left|f_{m}\right|^{(1+\varepsilon)} d x\right)^{\left(\frac{1+\varepsilon}{\varepsilon}\right) /(1+\varepsilon)}\right. \\
\left.+\frac{1}{\delta^{\left(\frac{1+\varepsilon}{\varepsilon}\right)}}\left(\int_{B_{2}} \sum_{m=1}^{s}\left|f_{m}\right|^{\left(\frac{1+\varepsilon}{\varepsilon}\right)_{1}} d x\right)^{\left(\frac{1+\varepsilon}{\varepsilon}\right) /\left(\frac{1+\varepsilon}{\varepsilon}\right)_{1}}\right\} \\
\leq \tilde{C}\left\{\left(\int_{B_{4}} \sum_{m=1}^{s}\left|u_{m}\right|^{(1+\varepsilon)} d x\right)^{\left(\frac{1+\varepsilon}{\varepsilon}\right) /(1+\varepsilon)}+\left(\int_{B_{4}} \sum_{m=1}^{s}\left|f_{m}\right|^{(1+\varepsilon)} d x\right)^{\left(\frac{1+\varepsilon}{\varepsilon}\right) /(1+\varepsilon)}\right. \\
\left.\quad+\frac{1}{\delta^{\left(\frac{1+\varepsilon}{\varepsilon}\right)}} \int_{B_{2}} \sum_{m=1}^{s}\left|f_{m}\right|^{\left(\frac{1+\varepsilon}{\varepsilon}\right)} d x\right\} \\
\leq \tilde{C}\left\{\int_{B_{4}} \sum_{m=1}^{s}\left|u_{m}\right|^{\left(\frac{1+\varepsilon}{\varepsilon}\right)} d x+\int_{B_{4}} \sum_{m=1}^{s}\left|f_{m}\right|^{\left(\frac{1+\varepsilon}{\varepsilon}\right)} d x\right\}
\end{gathered}
$$

Therefore, we discover

$$
J_{1} \leq\left(2 N_{0} \lambda_{*}\right)^{\left(\frac{1+\varepsilon}{\varepsilon}\right)}\left|B_{1}\right| \leq \tilde{C}\left\{\int_{B_{4}} \sum_{m=1}^{s}\left|u_{m}\right|^{\left(\frac{1+\varepsilon}{\varepsilon}\right)} d x+\int_{B_{4}} \sum_{m=1}^{s}\left|f_{m}\right|^{\left(\frac{1+\varepsilon}{\varepsilon}\right)} d x\right\}
$$

where $\tilde{C}=\tilde{C}\left(n, 1+\varepsilon,\left(\frac{1+\varepsilon}{\varepsilon}\right), \Lambda\right)$.
Estimate of J_{2}. From (3.3) we deduce that

$$
J_{2} \leq
$$

$$
\begin{aligned}
& \tilde{C} \varepsilon^{(1+\varepsilon)}\left\{\int_{0}^{\infty}\left(\lambda_{*}+\varepsilon\right)^{\left(\frac{1+\varepsilon}{\varepsilon}\right)-(1+\varepsilon)-1} \int_{\left\{x \in B_{2}: \sum_{m=1}^{s}\left|\nabla u_{m}\right|>\left(\lambda_{*}+\varepsilon\right) / 4\right\}} \sum_{m=1}^{s}\left|\nabla u_{m}\right|^{(1+\varepsilon)} d x d\left(\lambda_{*}+\varepsilon\right)\right. \\
& \left.+\frac{1}{\delta^{\left(\frac{1+\varepsilon}{\varepsilon}\right)_{1}}} \int_{0}^{\infty}\left(\lambda_{*}+\varepsilon\right)^{\left(\frac{1+\varepsilon}{\varepsilon}\right)-\left(\frac{1+\varepsilon}{\varepsilon}\right)_{1}-1} \int_{\left\{x \in B_{2}: \sum_{m=1}^{s}\left|f_{m}\right|>\delta\left(\lambda_{*}+\varepsilon\right) / 4\right\}} \sum_{m=1}^{s}\left|f_{m}\right|^{\left(\frac{1+\varepsilon}{\varepsilon}\right)_{1}} d x d\left(\lambda_{*}+\varepsilon\right)\right\}
\end{aligned}
$$

Recalling that

$$
\int_{\mathbb{R}^{n}}|g|^{\beta} d x=(\beta-\alpha) \int_{0}^{\infty} \mu^{\beta-\alpha-1} \int_{\left\{x \in \mathbb{R}^{n}:|g|>\mu\right\}} g^{\alpha} d x d \mu
$$

for $\beta>\alpha>1$, we have

$$
J_{2} \leq \tilde{C}_{1} \varepsilon^{(1+\varepsilon)} \int_{B_{2}} \sum_{m=1}^{s}\left|\nabla u_{m}\right|^{\left(\frac{1+\varepsilon}{\varepsilon}\right)} d x+\tilde{C}_{2} \varepsilon^{(1+\varepsilon)} \int_{B_{2}} \sum_{m=1}^{s}\left|f_{m}\right|^{\left(\frac{1+\varepsilon}{\varepsilon}\right)} d x
$$

where $\tilde{C}_{1}=\tilde{C}_{1}\left(n, 1+\varepsilon,\left(\frac{1+\varepsilon}{\varepsilon}\right), \Lambda\right)$ and $\tilde{C}_{2}=\tilde{C}_{2}\left(n, 1+\varepsilon,\left(\frac{1+\varepsilon}{\varepsilon}\right), \Lambda\right)$.
Combining the estimates of J_{1} and J_{2} we obtain

$$
\begin{gathered}
\int_{B_{1}} \sum_{m=1}^{s}\left|\nabla u_{m}\right|^{\left(\frac{1+\varepsilon}{\varepsilon}\right)} d x \leq \tilde{C}_{1} \varepsilon^{(1+\varepsilon)} \int_{B_{2}} \sum_{m=1}^{s}\left|\nabla u_{m}\right|^{\left(\frac{1+\varepsilon}{\varepsilon}\right)} d x \\
\quad+\widetilde{C}_{3} \int_{B_{4}} \sum_{m=1}^{s}\left(\left|u_{m}\right|^{\left(\frac{1+\varepsilon}{\varepsilon}\right)}+\left|f_{m}\right|^{\left(\frac{1+\varepsilon}{\varepsilon}\right)}\right) d x
\end{gathered}
$$

where $\tilde{C}_{3}=\tilde{C}_{3}\left(n, 1+\varepsilon,\left(\frac{1+\varepsilon}{\varepsilon}\right), \Lambda, \delta, \varepsilon\right)$. Selecting suitable ε such that $\tilde{C}_{1} \varepsilon^{(1+\varepsilon)}=$ $1 / 2$, and reabsorbing at the right-hand side first integral in the inequality above by a covering and iteration argument, we have

$$
\int_{B_{1}} \sum_{m=1}^{s}\left|\nabla u_{m}\right|^{\left(\frac{1+\varepsilon}{\varepsilon}\right)} d x \leq \tilde{C}\left\{\int_{B_{4}} \sum_{m=1}^{s}\left|u_{m}\right|^{\left(\frac{1+\varepsilon}{\varepsilon}\right)} d x+\int_{B_{4}} \sum_{m=1}^{s}\left|f_{m}\right|^{\left(\frac{1+\varepsilon}{\varepsilon}\right)} d x\right.
$$

Then by a shift and scaling transform, we can finish the proof.

References

[1] E. Acerbi, G. Mingione, Gradient estimates for the p(x)-Laplacean system, J. Reine Angew. Math. 584 (2005) 117-148.
[2] E. Acerbi, G. Mingione, Gradient estimates for a class of parabolic systems, Duke Math. J. 136 (2007) 285-320.
[3] S. Byun, L. Wang, Elliptic equations with BMO coefficients in Reifenberg domains, Comm. Pure Appl. Math. 57 (10) (2004) 1283-1310.
[4] S. Byun, L. Wang, Parabolic equations in Reifenberg domains, Arch. Ration. Mech. Anal. 176 (2005) 271-301.
[5] Y. Chen, L. Wu, Second Order Elliptic Partial Differential Equations and Elliptic Systems, American Mathematical Society, Providence, RI,1998.
[6] E. DiBenedetto, J. Manfredi, On the higher integrability of the gradient of weak solutions of certain degenerate elliptic systems, Amer. J. Math. 115 (1993) 11071134.
[7] M. Giquinta, Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Princeton University Press, Princeton, NJ, 1983.
[8] J. Kinnunen, S. Zhou, A local estimate for nonlinear equations with discontinuous coefficients, Comm. Partial Differential Equations 24 (1999) 2043-2068.
[9] T. Iwaniec, Projections onto gradient fields and Lp-estimates for degenerated elliptic operators, Studia Math. 75 (1983) 293-312.
[10] P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations 51 (1) (1984) 126-150.
[11] Fengping Yao and Caifang Wang, Local gradient estimates for nonlinear elliptic equations. J. Math. Anal. Appl. 338 (2008) 427-437.

