
International Journal of Scientific & Engineering Research Volume 11, Issue 7, July-2020                                                              1465 
ISSN 2229-5518  
 

IJSER © 2020 

http://www.ijser.org 

Local and Global weak solutions and 
Gradient Estimates for Nonlinear Elliptic 

Equations 
Yousri S. M. Yasin1 & Habeeb I. A. Ibrahim1,2  

1Department of Mathematics – Faculty of Education - University of Zalingei –Sudan  

2Department of Mathematics – College of Science & Arts in Elmiznab – Qassim University – 

Saudia Arabia. 

Abstract: 

In this paper, we Consider a certain quasilinear elliptic equation in an open 

bounded domain in ℝ𝑛 over a vector space, and obtain local 𝐿𝑞, 𝑞 ≥ 𝑝, gradient 

estimates for weak solutions of elliptic equations of p-Laplacian type with small 

BMO coefficients, Moreover, we give the main results. 
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1.Introduction: 

      Let us have the following quasilinear elliptic equation:  

                      div(𝐴∇𝑢𝑚 ⋅ ∇𝑢𝑚)(𝑝−2)/2𝐴𝛻𝑢𝑚) = div(|𝑓𝑚|𝑝−2𝑓𝑚)  in Ω        (1.1)                 

for 𝑝 > 1. Here Ω is an open bounded domain in ℝ𝑛. Moreover, 𝑓𝑚 = (𝑓𝑚
1 , . . . , 𝑓𝑚

1) 

is a given vector field and 𝐴 = {𝑎𝑖𝑗(𝑥)}𝑛×𝑛 is a symmetric matrix with measurable 

coefficients satisfying the uniformly elliptic condition  

                                                  𝛬−1|𝜉|2 ≤ 𝐴(𝑥)𝜉 ⋅ 𝜉 ≤ 𝛬|𝜉|2                          (1.2)                               

for all 𝜉 ∈ ℝ𝑛 and almost every 𝑥 ∈ ℝ𝑛, and for some positive constant 𝛬.                           

When A  is the identity matrix, then we obtain from [6], [9] that, 𝐿𝑞 , 𝑞 ≥ 𝑝, gradient 

estimate for weak solutions of equation (1.1) while [1] studied the case that 𝑝 =

𝑝(𝑥). Moreover, [8] have obtained 𝐿𝑞 , 𝑞 ≥ 𝑝, gradient estimates for weak solutions 

of equation (1.1) with VMO coefficients. These authors’ methods are all based on 

maximal functions. In this paper we give a new proof of 𝐿𝑞 , 𝑞 ≥ 𝑝, gradient 

estimates for weak solutions of equation (1.1) with small BMO coefficients by a 

direct and simple approach without using maximal functions . We would like to 

point out our assumption that 𝐴 is (𝛿, 𝑅) -vanishing weakens the assumption in [8] 

that 𝐴 is in VMO space [11].                                                                   
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Throughout this paper we assume that the coefficients of 𝐴 = {𝑎𝑖𝑗} are in 

elliptic BMO spaces and their elliptic semi-norms are small enough. More 

precisely, we have the following definitions.  

Definition (1.1): (Small BMO semi-norm condition).                                                                 

We say that the matrix 𝐴 of coefficient is (𝛿, 𝑅) -vanishing if 

sup
0<𝑟≤𝑅 

sup
𝑥∈ℝ𝑛

⨍
𝐵𝑟(𝑥)

|𝐴(𝑦) − �̄�𝐵𝑟(𝑥)|𝑑𝑦 ≤ 𝛿, 

Where 

�̄�𝐵𝑟(𝑥) = ⨍   
𝐵𝑟(𝑥)

𝐴(𝑦)𝑑𝑦. 

Recently 𝐿𝑝estimates for second-order linear elliptic/parabolic problems with small 

BMO coefficients have been studied in [3], [4]. We would like to point out that a 

function in VMO satisfies the small BMO condition described above; needless to 

say, if a function satisfies the VMO condition, then it does the small BMO conditi- 

ion. In the above definition we mean 𝑅 to be a positive constant while one can 

assume 𝑅 = 1 by a scaling transform, and 𝛿 to be scaling invariant. Throughout this 

section we mean 𝛿 to be a small positive constant.                                             

 We now state the definition of local weak solutions for (1.1). 

Definition (1.2): Assume that 𝑓𝑚 ∈ 𝐿loc
𝑝

(Ω). A function 𝑢𝑚 ∈ 𝑊loc
1,𝑝

(Ω) is a local 

weak solution of (1.1) if for any 𝜑 ∈ 𝑊0
1,𝑝

(Ω), we have   

∫ (𝐴𝛻𝑢𝑚 ⋅ 𝛻𝑢𝑚)(𝑝−2)/2𝐴𝛻𝑢𝑚 ⋅ 𝛻𝜑𝑑𝑥 = ∫ |𝑓𝑚|𝑝−2𝑓𝑚 ⋅ 𝛻𝜑𝑑𝑥
𝛺𝛺

 

Lemma (1.3): Assume that 𝐵3 ⊂ Ω. Then we have  

∫ |𝛻𝑢𝑚|𝑞𝑑𝑥 ≤ 𝐶{∫ |𝑢𝑚|𝑞𝑑𝑥 + ∫ |𝑓𝑚|𝑞𝑑𝑥
𝐵3𝐵3

}
𝐵1

                         (1.3)

 

where 𝐶 only depends on 𝑛, 𝑝, 𝛬.                                                                                                         

Proof:  

We may as well select the test function 𝜑 = 휁𝑝𝑢 ∈ 𝑊0
1,𝑝

(𝛺), where 휁 ∈ 𝐶0
∞(ℝ𝑛) is 

a cut-off function satisfying   

                                    0 ≤ 휁 ≤ 1, 휁 ≡ 1in𝐵1, 휁 ≡ 0inℝ𝑛/𝐵2.                                

Then by Definition (1.2), we have   
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∫ (𝐴𝛻𝑢𝑚 ⋅ 𝛻𝑢𝑚)(𝑝−2)/2𝐴𝛻𝑢𝑚 ⋅ 𝛻(휁𝑝𝑢)𝑑𝑥 = ∫ |𝑓|𝑝−2𝑓 ⋅
𝐵3

𝛻(휁𝑝𝑢𝑚)𝑑𝑥
𝐵3

 

and write the resulting expression as 

                                                          𝐼1 = 𝐼2 + 𝐼3 + 𝐼4,                                                                                                      

where                                                                                                                

𝐼1 = ∫ 휁𝑝(𝐴𝛻𝑢𝑚 ⋅ 𝛻𝑢𝑚)𝑝/2𝑑𝑥
𝐵3

 

𝐼2 = − ∫ 𝑝휁𝑝−1𝑢𝑚(𝐴𝛻𝑢𝑚 ⋅ 𝛻𝑢𝑚)(𝑝−2)/2(𝐴𝛻𝑢𝑚 ⋅ 𝛻휁)𝑑𝑥
𝐵3

 

𝐼3 = ∫ 휁𝑝|𝑓𝑚|𝑝−2𝑓 ⋅
𝐵3

𝛻𝑢𝑚𝑑𝑥 

𝐼4 = ∫ 𝑝휁𝑝−1𝑢𝑚|𝑓|𝑝−2𝑓𝑚 ⋅
𝐵3

𝛻휁𝑑𝑥 

Estimate of 𝐼1. It follows from the uniformly elliptic condition (1.2) that 

𝐼1 = ∫ 휁𝑝(𝐴𝛻𝑢𝑚 ⋅ 𝛻𝑢𝑚)𝑝/2𝑑𝑥 ≥
1

𝛬𝐵3

∫ 휁𝑝|𝛻𝑢𝑚|𝑝

𝐵3

𝑑𝑥 

Estimate of 𝐼2. From the uniformly elliptic condition (1.2) and Young’s inequality 

with 𝜏 we have  

𝐼2 ≤ 𝐶 ∫ 휁𝑝−1|𝛻𝑢𝑚|𝑝−1|𝑢𝑚|𝑑𝑥 ≤ 𝜏
𝐵3

∫ 휁𝑝|𝛻𝑢𝑚|𝑝

𝐵3

𝑑𝑥 + 𝐶(𝜏) ∫ |𝑢𝑚|𝑝

𝐵3

𝑑𝑥 

Estimate of 𝐼3: From Young’s inequality we have 

𝐼3 ≤ 𝜏 ∫ 휁𝑝|𝛻𝑢𝑚|𝑝𝑑𝑥
𝐵3

+ 𝐶(𝜏) ∫ |𝑓𝑚|𝑝

𝐵3

𝑑𝑥
 

Estimate of 𝐼4: From Young’s inequality we have  

𝐼4 ≤ 𝐶{∫ |𝑢𝑚|𝑝𝑑𝑥 + ∫ |𝑓𝑚|𝑝𝑑𝑥
𝐵3𝐵3

} 

Combining all the estimates of 𝐼𝑖(1 ≤ 𝑖 ≤ 4), we conclude that 

1

𝛬
∫ 휁𝑝|𝛻𝑢𝑚|𝑝𝑑𝑥 ≤ 2𝜏

𝐵3

∫ 휁𝑝|𝛻𝑢𝑚|𝑝

𝐵3

𝑑𝑥 + 𝐶(𝜏) ∫ (𝑢𝑚
𝑝𝑑𝑥 + |𝑓𝑚|𝑝)

𝐵3

𝑑𝑥 
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Selecting 𝜏 = 1/(4𝛬) and recalling the definition of 휁, we complete the proof.                                                  

We henceforth assume that 𝑞 > 𝑝. Now we denote 
1q  by 

                                                  𝑞1 =: (𝑞 + 𝑝)/2 ∈ (𝑝, 𝑞).                                                           

Then we recall the following well-known result [8]. 

Lemma (1.4): Suppose that 𝑓 ∈ 𝐿𝑞1(𝛺) and let 𝑢𝑚 ∈ 𝑊loc
1,𝑝

(𝛺) be a local weak 

solution of (1.1). Then there exists 𝑞2, 𝑝 < 𝑞2 < 𝑞1 such that  

( ⨍   
𝐵𝑠(𝑥1)

|𝛻𝑢𝑚|𝑞2𝑑𝑥)

1/𝑞2

≤ 𝐶 {( ⨍   
𝐵2𝑠(𝑥1)

|𝛻𝑢𝑚|𝑝𝑑𝑥)

1/𝑝

+ ( ⨍   
𝐵2𝑠(𝑥1)

|𝑓𝑚|𝑞1𝑑𝑥)

1/𝑞1

} 

for every 𝐵2𝑠(𝑥1) ⊂ Ω, where 𝑞2 and 𝐶 only depend on 𝑛, 𝑝, 𝑞1, 𝛬.                                                            

Next, we give two lemmas which are very important to obtain the main result,  

The two lemmas are much influenced by [2].We write 

𝜆0 = {(⨍   
𝐵2

|𝛻𝑢𝑚|𝑝𝑑𝑥)

1/𝑝

+
1

𝛿
(⨍   

𝐵2

|𝑓𝑚|𝑞1𝑑𝑥)

1/𝑞1

}                   (1.4) 

and  

                                                 𝐸(𝜆) = {𝑥 ∈ 𝐵1: |𝛻𝑢𝑚| > 𝜆}                                                                 

for 𝜆 > 0 while 𝛿 > 0 is going to be chosen later.                                                             

Since |𝛻𝑢𝑚| is bounded in 𝐵1\𝐸(𝜆) for a fixed 𝜆 > 0, we focus our attention on the 

level set 𝐸(𝜆). Now we will decompose 𝐸(𝜆) into a family of disjoint balls. 

Lemma (1.5): Given 𝜆 ≥ 𝜆∗ =: 26𝑛/𝑝𝜆0, there exists a family of disjoint balls 

{𝐵𝑖
0}𝑖∈ℕ = {𝐵𝜌𝑥𝑖

(𝑥𝑖)}𝑖∈ℕ, 𝑥𝑖 ∈ 𝐸(𝜆) such that 0 < 𝜌𝑥𝑖
< 1/25 and  

(⨍  
𝐵𝑖

0
|𝛻𝑢𝑚|𝑝𝑑𝑥)

1/𝑝

+
1

𝛿
(⨍   

𝐵𝑖
0

|𝑓𝑚|𝑞1𝑑𝑥)

1/𝑞1

=  𝜆 

Moreover, we have  

                                                       𝐸(𝜆) ⊂ ∪
𝑖∈ℕ

𝐵𝑖
1,                                                                           

where 𝐵𝑖
𝑗

=: 2𝑗+2𝐵𝑖
0 for 𝑗 = 1,2,3, and for any 𝜌𝑥𝑖

< 𝑠 < 1,   

( ⨍  
𝐵𝑠(𝑥𝑖)

|𝛻𝑢𝑚|𝑝𝑑𝑥)

1/𝑝

+
1

𝛿
( ⨍   

𝐵𝑠(𝑥𝑖)

|𝑓𝑚|𝑞1𝑑𝑥)

1/𝑞1

≤  𝜆 
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Proof:                                                                                                                       

(i) For convenience, we denote  

𝐽[𝐵] = (⨍  
𝐵

|𝛻𝑢𝑚|𝑝𝑑𝑥)
1/𝑝

+
1

𝛿
(⨍   

𝐵

|𝑓𝑚|𝑞1𝑑𝑥)
1/𝑞1

 

Now we claim that  

                                      𝑠𝑢𝑝
𝑤∈𝐵1

𝑠𝑢𝑝
1/25≤𝜆≤1

𝐽[𝐵𝜌(𝑤)] ≤ 2
6𝑛

𝑝 𝜆0 =: 𝜆∗                         (1.5)                             

To prove this, fix any 𝑤 ∈ 𝐵1 and 1/25 ≤ 𝜌 ≤ 1. Then it follows from (1.4) that  

( ⨍  
𝐵𝜌(𝑤)

|𝛻𝑢𝑚|𝑝𝑑𝑥)

1/𝑝

≤ (
|𝐵2|

|𝐵𝜌(𝑤)|
)

1/𝑝

(⨍  
𝐵2

|𝛻𝑢𝑚|𝑝𝑑𝑥)

1/𝑝

 

                           ≤  26𝑛/𝑝 (⨍  
𝐵2

|𝛻𝑢𝑚|𝑝𝑑𝑥)

1/𝑝

. 

Similarly, we have  

( ⨍  
𝐵𝜌(𝑤)

|𝑓𝑚|𝑞1𝑑𝑥)

1/𝑞1

≤  26𝑛/𝑞1 (⨍  
𝐵2

|𝑓𝑚|𝑞1𝑑𝑥)

1/𝑞1

 

Consequently, combining the two inequalities above and the definitions of 𝜆0 and 

𝑞1, we know (1.4) holds true.                                                                                                            

(ii) Let 𝜆 ≥ 𝜆∗ =: 26𝑛/𝑝𝜆0. Now for a.e. 𝑤 ∈ 𝐸(𝜆), a version of Lebesgue’s 

differentiation theorem implies that  

                                                       lim
𝜌→0

J[𝐵𝜌(𝑤)] > 𝜆,                                                     

which implies that there exists some 𝜌 > 0 satisfying  

                                                           J[𝐵𝜌(𝑤)] > 𝜆.                                                      

Therefore, from step (i) we can select a radius 𝜌𝑤 ∈ (0,1/25] such that  

                                                          𝐽[𝐵𝜌𝑤
(𝑤)] = 𝜆                                                          

and that for 𝜌𝑤 < 𝜌 ≤ 1,   

                                                          𝐽[𝐵𝜌(𝑤)] < 𝜆.                                                        

From the argument above for a.e. 𝑤 ∈ 𝐸(𝜆) there exists a ball 𝐵𝜌𝑤
(𝑤) constructed 
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as above. Therefore, applying Vitali’s covering lemma, we can find a family of 

disjoint balls {𝐵𝑖
0}𝑖∈ℕ = {𝐵𝜌𝑥𝑖

(𝑥𝑖)}𝑖∈ℕ, 𝑥𝑖 ∈ 𝐸(𝜆)
 
so that the results of the lemma 

 hold true. This completes our proof.                                                                                              

Now, we obtain the following estimates of balls {𝐵𝑖
0}. 

Lemma (1.6): Under the same hypothesis and results as in Lemma (1.6), we have  

|𝐵𝑖
0| ≤ 𝐶 (

1

𝜆𝑝
∫ |𝛻𝑢𝑚|𝑝𝑑𝑥 +

1

𝜆𝑞1𝛿𝑞1
{𝑥∈𝐵𝑖

0:|𝛻𝑢𝑚|>𝜆/4}

∫ |𝑓𝑚|𝑞1𝑑𝑥
{𝑥∈𝐵𝑖

0:|𝑓|>𝛿𝜆/4}

) 

where 𝐶 = 𝐶(𝑝, 𝑞1) = 2𝑞1/[1 − (1/2)𝑝 − (1/2)𝑞1]. 

Proof:  

From the lemma above we see  

(∫ |𝛻𝑢𝑚|𝑝𝑑𝑥 +
1

𝛿𝐵𝑖
0

∫ |𝑓𝑚|1/𝑞1𝑑𝑥
𝐵𝑖

0
) =  𝜆 

which implies that                                                                     

|𝐵𝑖
0| ≤

2𝑝

𝜆𝑝
∫ |𝛻𝑢𝑚|𝑝𝑑𝑥 +

2𝑞1

𝜆𝑞1𝛿𝑞1
𝐵𝑖

0
∫ |𝑓𝑚|

1
𝑞1𝑑𝑥

𝐵𝑖
0

                  (1.6) 

since either of the following inequalities must be true:                                                

𝜆/2 ≤ (∫ |𝛻𝑢𝑚|𝑝𝑑𝑥
𝐵𝑖

0
)

1
𝑝, 

 or 

𝜆/2 ≤
1

𝛿
(∫ |𝑓𝑚|𝑞1𝑑𝑥

𝐵𝑖
0

)1/𝑞1 

Therefore, by splitting the right-hand side two integrals in (1.6) as follows we have  

|𝐵𝑖
0| ≤ 𝐶(

2𝑝

𝜆𝑝
∫ |𝛻𝑢𝑚|𝑝𝑑𝑥 + (1/2)𝑝|𝐵𝑖

0|
{𝑥∈𝐵𝑖

0:|𝛻𝑢𝑚|>𝜆/4}

 

+ 
2𝑞1

𝜆𝑞1𝛿𝑞1
∫ |𝑓𝑚|𝑞1𝑑𝑥 + (1/2)𝑞1|𝐵𝑖

0|
{𝑥∈𝐵𝑖

0:|𝑓|>𝛿𝜆/4}

 

Thus, we have concluded with the desired estimate.  
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In the following it is sufficient to consider the proof of Theorem (3.1) in 

section three, as an a priori estimate, therefore assuming a priori that 𝛻𝑢𝑚 ∈

𝐿loc
𝑞

(Ω). This assumption can be removed in a standard way via an approximation 

argument as for instance the one in [10]. In view of Lemma (1.6), given 𝜆 ≥ 𝜆∗ =

26𝑛/𝑝𝜆0, we can construct a family of disjoint balls {𝐵𝑖
0}𝑖∈ℕ = {𝐵𝜌𝑥𝑖

(𝑥𝑖)}𝑖∈ℕ, 𝑥𝑖 ∈

𝐸(𝜆). Fix any 𝑖 ∈ ℕ and set  

                                                𝑢𝑚𝜆
= 𝑢𝑚/𝜆   and   𝑓𝑚𝜆

= 𝑓𝑚/𝜆.                                               

Then 𝑢𝑚𝜆
 is still a local weak solution of (1.1) with 𝑓𝑚𝜆

 replacing 𝑓𝑚. It follows 

from Lemma (1.6) that  

∫ |𝛻𝑢𝑚𝜆
|

𝑝
𝑑𝑥

𝐵𝑖
𝑗

≤ 1 and ∫ |𝑓𝑚𝜆
|

𝑞1
𝑑𝑥

𝐵𝑖
𝑗

≤ 𝛿𝑞1                 (1.7) 

for 𝑗 = 1,2,3, where 𝐵𝑖
𝑗

=: 2𝑗+2𝐵𝑖
0 is defined in Lemma (1.5).                                                       

Let 𝑣 be the weak solution of the following reference equation 

{
div((�̄�𝐵𝑠

𝛻𝑣 ⋅ 𝛻𝑣)(𝑝−2)/2�̄�𝐵𝑠
𝛻𝑣) = 0 in𝐵𝑠

𝑣 = 𝑢on ∂𝐵𝑠

                         (1.8) 

2.The Global weak solutions and grading estimates:  

Definition (2.1): Assume that 𝑔 ∈ 𝑊1,𝑝(𝐵𝑠). We say that 𝑣 ∈ 𝑊1,𝑝(𝐵𝑠) with 𝑣 −

𝑔 ∈ 𝑊0
1,𝑝

(𝐵𝑠) is a weak solution of 

{
div((�̄�𝐵𝑠

𝛻𝑣 ⋅ 𝛻𝑣)(𝑝−2)/2�̄�𝐵𝑠
𝛻𝑣) = 0in𝐵𝑠,

𝑣 = 𝑔on ∂𝐵𝑠.
 

if we have  

∫ (�̄�𝐵𝑠
𝛻𝑣 ⋅ 𝛻𝑣)(𝑝−2)/2�̄�𝐵𝑠

𝛻𝑣 ⋅ 𝛻𝜑𝑑𝑥 = 0
𝐵𝑠

 

 for any 𝜑 ∈ 𝑊0
1,𝑝

(𝐵𝑠).                                                                                                       

Now we recall the following estimates of 𝑣 (see [8], [10]) 

∫ |𝛻𝑣|𝑝𝑑𝑥
𝐵𝑠

≤ 𝐶 ∫ |𝛻𝑢𝑚|𝑝𝑑𝑥
𝐵𝑠

                             (2.1) 

and 
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𝑠𝑢𝑝
𝐵𝜌

|𝛻𝑣| ≤ 𝐶 (∫ |𝛻𝑣|𝑝𝑑𝑥
𝐵𝑠

)1/𝑝)                      (2.2) 

for any 𝜌 ∈ (0, 𝑠/2], where 𝐶 = 𝐶(𝑛, 𝑝, 𝛬). Furthermore, we can obtain the 

following important result. 

Lemma (2.2): For any 휀 > 0, there exists a small 𝛿 = 𝛿(휀) > 0 such that if 𝑢𝑚 is a 

local weak solution of (1.1) in Ω with 𝐵4 ⊂ Ω, 

∫ |𝐴 − �̄�𝐵2
|

𝐵2

𝑑𝑥 ≤ 𝛿                              (2.3) 

⨍  
𝐵4

|𝛻𝑢𝑚|𝑝𝑑𝑥 ≤ 1 and ⨍  
𝐵4

|𝑓𝑚|𝑞1𝑑𝑥 ≤  𝛿𝑞1                     (2.4) 

then there exists 𝑁0 > 1 such that  

                                                          sup
𝐵1

|𝛻𝑣| ≤ 𝑁0                                             (2.5)      

and  

                                                       ∫ |𝛻(𝑢𝑚 − 𝑣)|𝑝
𝐵2

𝑑𝑥 ≤ 휀𝑝                              (2.6)    

where 𝑣 is the weak solution of (2.1) in 𝐵2.                                                                    

Proof: The conclusion (2.5) follows from (2.1), (2.2) and (2.4) since 𝑢𝑚 and 𝑣 are 

the weak solutions of (1.1) in Ω and (2.1) in 𝐵2, respectively.                                              

We may as well choose the test function 𝜑 = 𝑣 − 𝑢 ∈ 𝑊0
1,𝑝

(𝐵2) and then a direct 

calculation shows the resulting expression as  

                                                               𝐼1 = 𝐼2 + 𝐼3,                                                           

where  

𝐼1 = ∫ (�̄�𝐵2
𝛻𝑣 ⋅ 𝛻𝑣)

𝑝−2
2 �̄�𝐵2

𝛻𝑣 − (�̄�𝐵2
𝛻𝑢𝑚 ⋅ 𝛻𝑢𝑚)

𝑝−2
2 �̄�𝐵2

𝛻𝑢𝑚) . 𝛻(𝑣 − 𝑢𝑚)𝑑𝑥
𝐵2

 

𝐼2 = ∫ ((�̄�𝛻𝑢𝑚 ⋅ 𝛻𝑢𝑚)(𝑝−2)/2�̄�𝛻𝑢𝑚 − (�̄�𝐵2
𝛻𝑢𝑚 ⋅ 𝛻𝑢𝑚)(𝑝−2)/2�̄�𝐵2

𝛻𝑢𝑚) ⋅ 𝛻(𝑣 − 𝑢𝑚)𝑑𝑥
𝐵2

 

𝐼3 = − ∫ |𝑓𝑚|𝑝−2𝑓 ⋅ 𝛻(𝑣 − 𝑢)𝑑𝑥
𝐵2

 

Estimate of 𝐼1. We divide into two cases. 

Case 1.  𝑝 ≥ 2. Using the elementary inequality   
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((�̄�𝐵2
𝜉 ⋅ 𝜉)(𝑝−2)/2�̄�𝐵2

𝜉 − (�̄�𝐵2
휂 ⋅ 휂)(𝑝−2)/2�̄�𝐵2

휂) ⋅ (𝜉 − 휂) ≥ 𝐶|𝜉 − 휂|𝑝 

for every 𝜉, 휂 ∈ ℝ𝑛 with 𝐶 = 𝐶(𝑝, 𝛬), we have  

𝐼1 ≥ 𝐶 ∫ |𝛻(𝑢𝑚 − 𝑣)|𝑝𝑑𝑥
𝐵2

 

Case 2. 1 < 𝑝 < 2. Using the elementary inequality 

|𝜉 − 휂|𝑝 ≤ 𝐶𝜏(𝑝−2)/𝑝((�̄�𝐵2
𝜉 ⋅ 𝜉)(𝑝−2)/2�̄�𝐵2

𝜉 − (�̄�𝐵2
휂 ⋅ 휂)(𝑝−2)/2�̄�𝐵2

휂) ⋅ (𝜉 − 휂) + 𝜏|휂|𝑝 

for every 𝜉, 휂 ∈ ℝ𝑛 and every 𝜏 ∈ (0,1) with 𝐶 = 𝐶(𝑝, 𝛬), we have  

𝐼1 + 𝜏 ∫ |𝛻𝑢𝑚|𝑝𝑑𝑥
𝐵2

≥ 𝐶(𝜏) ∫ |𝛻(𝑢𝑚 − 𝑣)|𝑝𝑑𝑥
𝐵2

 

Estimate of 2I . Using the elementary inequality 

|(𝐴𝜉 ⋅ 𝜉)(𝑝−2)/2𝐴𝜉 − (�̄�𝐵2
𝜉 ⋅ 𝜉)(𝑝−2)/2�̄�𝐵2

𝜉| ≤ 𝐶|𝐴 − �̄�𝐵2
||𝜉|𝑝−1 

for every 𝜉, 휂 ∈ ℝ𝑛 with 𝐶 = 𝐶(𝑝, 𝛬), and then using Young’s inequality with   

and Hölder’s inequality, we have        

𝐼2 ≤ 𝐶 ∫ |𝐴 − �̄�𝐵2
|

𝐵2

|𝛻𝑢𝑚|𝑝−1|𝛻(𝑢𝑚 − 𝑣)|𝑑𝑥  

≤ 𝐶(𝜏) ∫ |𝐴 − �̄�𝐵2
|

𝐵2

𝑝
𝑝−1

|𝛻𝑢𝑚|𝑝𝑑𝑥 + +𝜏 ∫ |𝛻(𝑢𝑚 − 𝑣)|
𝐵2

𝑝

𝑑𝑥
 

≤ 𝐶(𝜏) (∫ |𝐴 − �̄�𝐵2
|

𝐵2

𝑝𝑞2/[(𝑝−1)(𝑞2−𝑝)]

𝑑𝑥)

(𝑞2−𝑝)/𝑞2

(∫ |𝛻𝑢𝑚|𝑞2

𝐵2

𝑑𝑥)

𝑝/𝑞2

 

+𝜏 ∫ |𝛻(𝑢𝑚 − 𝑣)|
𝐵2

𝑝

𝑑𝑥. 

We remark that 

(∫ |𝐴 − �̄�𝐵2
|

𝐵2

𝑝𝑞2/[(𝑝−1)(𝑞2−𝑝)]

𝑑𝑥)(𝑞2−𝑝)/𝑞2 

≤ (2𝛬)(𝑝2+𝑞2−𝑝)/[𝑞2(𝑝−1)](∫ |𝐴 − �̄�𝐵2
|

𝐵2

𝑑𝑥)(𝑞2−𝑝)/𝑞2

 

                                                     

≤ 𝐶𝛿(𝑞2−𝑝)/𝑞2      
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as a consequence of (1.2) and (2.3), and  

(∫ |𝛻𝑢𝑚|
𝐵2

𝑞2

𝑑𝑥)

𝑝/𝑞2

≤ 𝐶 [∫ |𝛻𝑢𝑚|𝑝

𝐵4

𝑑𝑥)1/𝑝 + ∫ |𝑓𝑚|𝑞1

𝐵4

𝑑𝑥)1/𝑞1]

𝑝

≤ 𝐶 

as a consequence of Lemma (1.4) and (2.4), where 𝐶 = 𝐶(𝑛, 𝑝, 𝑞1, 𝛬). Here we have 

used the assumption that 𝛿 < 1. Thus we deduce that 

𝐼2 ≤ 𝐶(𝜏)𝛿(𝑞2−𝑝)/𝑞2 + 𝜏 ∫ |𝛻(𝑢𝑚 − 𝑣)|𝑝𝑑𝑥
𝐵2

 

Estimate of 𝐼3. Using Young’s inequality with 𝜏 and 𝐻ö𝑙𝑑𝑒𝑟’𝑠 inequality, we have 

𝐼3 ≤ 𝜏 ∫ |𝛻(𝑢𝑚 − 𝑣)|𝑝𝑑𝑥
𝐵2

+ 𝐶(𝜏) ∫ |𝑓𝑚|𝑝𝑑𝑥
𝐵2

 

≤ 𝜏 ∫ |𝛻(𝑢𝑚 − 𝑣)|𝑝𝑑𝑥
𝐵2

+ 𝐶(𝜏)(∫ |𝑓𝑚|𝑞1

𝐵2

𝑑𝑥)𝑝/𝑞1 

≤ 𝜏 ∫ |𝛻(𝑢𝑚 − 𝑣)|𝑝𝑑𝑥
𝐵2

+ 𝐶(𝜏)𝛿𝑝 

Combining all the estimates of 𝐼𝑖(1 ≤ 𝑖 ≤ 3), we obtain     

𝐶(𝜏) ∫ |𝛻(𝑢𝑚 − 𝑣)|𝑝𝑑𝑥
𝐵2

≤ 2𝜏 ∫ |𝛻(𝑢𝑚 − 𝑣)|𝑝𝑑𝑥
𝐵2

 

+𝜏 ∫ |𝛻𝑢𝑚|𝑝𝑑𝑥
𝐵2

+ 𝐶(𝜏)[𝛿(𝑞2−𝑝)/𝑞2 + 𝛿𝑝] 

Selecting a small constant 𝜏 > 0 such that 0 < 𝜏 ≪ 𝛿 < 1, and then using (2.4), we 

conclude that  

∫ |𝛻(𝑢 − 𝑣)|𝑝𝑑𝑥
𝐵2

≤ 𝐶[𝛿 + 𝛿(𝑞2−𝑝)/𝑞2 + 𝛿𝑝] = 휀𝑝 

by selecting   satisfying the last inequality above. This completes the proof.                                     

Let 𝛿 in (1.4) and Definition (1.1) be the same as that in Lemma (2.2). As 

announced in the beginning of this section, 𝐴 is (𝛿, 1) -vanishing. Therefore  

∫ |𝐴 − �̄�
𝐵𝑖

𝑗|𝑑𝑥 ≤ 𝛿
𝐵𝑖

𝑗
                                           (2.7) 
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for 𝑗 = 0,1,2,3, since the radiuses of 𝐵𝑖
𝑗
(0 ≤ 𝑗 ≤ 3) are not larger than 1. Then 

recalling (1.7), we obtain the following scaling invariant form of Lemma (2.2).                          

Lemma (2.3):  

Assume that 𝜆 ≥ 𝜆∗. For any 휀 > 0, there exists a small 𝛿 = 𝛿(휀) > 0 such that if 

𝑢𝑚 is a local weak solution of (1.1) in Ω with 𝐵𝑖
3 ⊂ Ω, then there exists 𝑁0 > 1 

such that  

𝑠𝑢𝑝
𝐵𝑖

2
|𝛻𝑣𝜆

𝑖 | ≤ 𝑁0 𝑎𝑛𝑑 ∫ |𝛻(𝑢𝑚𝜆
− 𝑣𝜆

𝑖 )|
𝑝

𝐵𝑖
2

𝑑𝑥 ≤ 휀𝑝             (2.8) 

Where 𝑣𝜆
𝑖  is the weak solution of (2.1) in 𝐵𝑖

2 with 𝑢𝑚𝜆
 replacing 𝑢𝑚.                                

Proof: From the definitions of 𝐵𝑖
𝑗
 for𝑗 = 0,1,2,3, we rescale by defining   

                                           {

(𝑢𝑚)𝜆
𝑖 (𝑥) = 𝑢𝑚𝜆

(23𝜌𝑥𝑖
𝑥)/(23𝜌𝑧𝑖

),

(𝑓𝑚)𝜆
𝑖 (𝑥) = 𝑓𝑚𝜆

(23𝜌𝑥𝑖
𝑥),

𝐴𝑖(𝑥) = 𝐴(23𝜌𝑥𝑖
𝑥), 𝑥 ∈ 𝐵4.

 

Then (𝑢𝑚)𝜆
𝑖  is a local weak solution of   

div((𝐴𝑖𝛻(𝑢𝑚)𝜆
𝑖 ⋅ 𝛻(𝑢𝑚)𝜆

𝑖 )(𝑝−2)/2𝐴𝑖𝛻(𝑢𝑚)𝜆
𝑖 ) = div(|(𝑓𝑚)𝜆

𝑖 |𝑝−2(𝑓𝑚)𝜆
𝑖 )   in 4B  

and from (1.7) and (2.7) one can readily check that                                  

∫ |𝛻(𝑢𝑚)𝜆
𝑖 (𝑥)|

𝑝
𝑑𝑥

𝐵4

≤ 1, ∫ |(𝑓𝑚)𝜆
𝑖 |

𝑝
𝑑𝑥

𝐵4

≤ 𝛿𝑝 

and 

∫ |𝐴𝑖 − 𝐴�̅�
𝐵2

|
𝑝

𝑑𝑥
𝐵2

≤ 𝛿 

Then according to Lemma (2.1), there exists a weak solution 𝑣 of   

                                 {
div((𝐴𝑖

𝐵2
𝛻𝑣 ⋅ 𝛻𝑣)(𝑝−2)/2𝐴𝑖

𝐵2
𝛻𝑣) = 0in𝐵2,

𝑣 = 𝑢𝜆
𝑖 on ∂𝐵2

                                                                         

such that  

𝑠𝑢𝑝
𝐵1

|𝛻𝑣| ≤ 𝑁0 and ∫ |𝛻(𝑢𝜆
𝑖 − 𝑣)|

𝑝

𝐵2

𝑑𝑥 ≤ 휀𝑝 
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Now we define 𝑣𝜆
𝑖  in 𝐵𝑖

2 by  

𝑣(𝑥) =
1

23𝜌𝑥𝑖

𝑣𝜆
𝑖 (23𝜌𝑥𝑖

𝑥), 𝑥 ∈ 𝐵2                                                              

Then changing variables, we recover the conclusion of Lemma (2.2). This 

completes the proof. 

3.3 The main results: 

Theorem (3.1):  

Assume that 𝑞 ≥ 𝑝. Let 𝑢𝑚 be a local weak solution of (1.1). Then there exists a 

small 𝛿 = 𝛿(𝑛, 𝑝, 𝑞, 𝛬, 𝑅) > 0 so that for each uniformly elliptic and (𝛿, 𝑅) -

vanishing, A , and for all 𝑓 with 𝑓𝑚 ∈ 𝐿loc
𝑞

(Ω;ℝ𝑛), we have  

∫ |𝛻𝑢𝑚|𝑞𝑑𝑥 ≤ 𝐶[∫ |𝑢𝑚|𝑞𝑑𝑥 + ∫ |𝑓𝑚|𝑞𝑑𝑥
𝐵4𝑟(𝑥0)𝐵4𝑟(𝑥0)

]
𝐵𝑟(𝑥0)

               (3.1) 

where 𝐵4𝑟(𝑥0) ⊂ Ω and the constant 𝐶 is independent of 𝑢𝑚 and 𝑓𝑚. 

Our approach is very much influenced by [2,8].  

Proof:  

i- When 𝑞 = 𝑝, the proof is trivial. 

ii-From Lemma (2.2), for any 𝜆 ≥ 𝜆∗ we have   

|{𝑥 ∈ 𝐵𝑖
1: |𝛻𝑢𝑚| > 2𝑁0𝜆}| = |{𝑥 ∈ 𝐵𝑖

1: |𝛻𝑢𝑚𝜆
| > 2𝑁0}| 

≤ |{𝑥 ∈ 𝐵𝑖
1: |𝛻(𝑢𝑚𝜆

− 𝑣𝜆
𝑖 )| > 𝑁0}| 

+ |{𝑥 ∈ 𝐵𝑖
1: |𝛻𝑣𝜆

𝑖 | > 𝑁0}| = |{𝑥 ∈ 𝐵𝑖
1: |𝛻(𝑢𝑚𝜆

− 𝑣𝜆
𝑖 )| > 𝑁0}| 

≤
1

𝑁0
𝑝 ∫ |𝛻(𝑢𝑚 − 𝑣𝜆

𝑖 )|
𝑝

𝑑𝑧
𝐵𝑖

2
≤

휀𝑝|𝐵𝑖
2|

𝑁0
𝑝 =

24𝑛휀𝑝|𝐵𝑖
0|

𝑁0
𝑝  

which follows from Lemma (1.5) that 

|{𝑥 ∈ 𝐵𝑖
1: |𝛻𝑢𝑚| > 2𝑁0𝜆}| ≤ 𝐶 (휀𝑝(

1

𝜆𝑝
∫ |𝛻𝑢𝑚|𝑝𝑑𝑥

{𝑥∈𝐵𝑖
0:|𝛻𝑢𝑚|>𝜆/4}

 

+ 
1

𝜆𝑞1𝛿𝑞1
∫ |𝑓𝑚|𝑞1𝑑𝑥

{𝑥∈𝐵𝑖
0:|𝑓|>𝛿𝜆/4}

). 
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where 𝐶 = 𝐶(𝑛, 𝑝, 𝑞1, 𝛬). Recalling the fact that the balls 0{ }iB  are disjoint and  

∪
𝑖∈ℕ

𝐵𝑖
1 ⊃ 𝐸(𝜆) = {𝑥 ∈ 𝐵1: |𝛻𝑢𝑚| > 𝜆}                                                          

for any𝜆 ≥ 𝜆∗, and then summing up on 𝑖 ∈ ℕ in the inequality above, we have 

|{𝑥 ∈ 𝐵1: |𝛻𝑢𝑚| > 2𝑁0𝜆}| 

≤ ∑|{𝑥 ∈ 𝐵𝑖
1: |𝛻𝑢𝑚| > 2𝑁0𝜆}|

𝑖

 

≤ 𝐶휀𝑝 (
1

𝜆𝑝
∫ |𝛻𝑢𝑚|𝑝𝑑𝑥

{𝑥∈𝐵2:|𝛻𝑢𝑚|>
𝜆
4

}

+
1

𝜆𝑞1𝛿𝑞1
∫ |𝑓𝑚|𝑞1𝑑𝑥

{𝑥∈𝐵2:|𝑓|>
𝛿𝜆
4

}

)         (3.2) 

for any 𝜆 ≥ 𝜆∗. Recalling the standard argument of measure theory, we compute 

∫ |𝛻𝑢𝑚|𝑞𝑑𝑧
𝐵1

 = 𝑞 ∫ 𝜇𝑞−1|{𝑥 ∈ 𝐵1: |𝛻𝑢𝑚| > 𝜇}|𝑑𝜇
∞

0

 

= 𝑞 ∫ 𝜇𝑞−1|{𝑥 ∈ 𝐵1: |𝛻𝑢𝑚| > 𝜇}|𝑑𝜇
2𝑁0𝜆∗

0

+ 𝑞 ∫ 𝜇𝑞−1|{𝑥 ∈ 𝐵1: |𝛻𝑢𝑚| > 𝜇}|𝑑𝜇
∞

2𝑁0𝜆∗

 

= 𝑞 ∫ 𝜇𝑞−1|{𝑥 ∈ 𝐵1: |𝛻𝑢𝑚| > 𝜇}|𝑑𝜇
2𝑁0𝜆∗

0

 

+𝑞 ∫ (2𝑁0𝜆)𝑞−1|{𝑥 ∈ 𝐵1: |𝛻𝑢𝑚| > 2𝑁0𝜆}|𝑑(2𝑁0𝜆)
∞

𝜆∗

 

=: 𝐽1 + 𝐽2.  

Estimate of 𝐽1: From the definitions of 𝜆∗ and 𝜆0 we deduce that 

𝜆∗
𝑞

= 26𝑛𝑞/𝑝𝜆0
𝑞

≤ 𝐶{(∫ |𝛻𝑢𝑚|𝑝𝑑𝑥
𝐵2

)𝑞/𝑝 +
1

𝛿𝑞
(∫ |𝑓𝑚|𝑞1𝑑𝑥

𝐵2

)𝑞/𝑞1} 

which follows from Lemma (1.3) and 𝐻ö𝑙𝑑𝑒𝑟’𝑠 inequality that  

𝜆∗
𝑞

≤ 𝐶 [(∫ |𝑢𝑚|𝑝𝑑𝑥
𝐵4

+ ∫ |𝑓𝑚|𝑝𝑑𝑥
𝐵4

)

𝑞/𝑝

+
1

𝛿𝑞
(∫ |𝑓𝑚|𝑞1𝑑𝑥

𝐵2

)

𝑞/𝑞1

] 

≤ 𝐶{(∫ |𝑢𝑚|𝑝𝑑𝑥
𝐵4

)𝑞/𝑝 + (∫ |𝑓𝑚|𝑝𝑑𝑥
𝐵4

)𝑞/𝑝 +
1

𝛿𝑞
∫ |𝑓𝑚|𝑞𝑑𝑥

𝐵2

} 
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≤ 𝐶{∫ |𝑢𝑚|𝑞𝑑𝑥
𝐵4

+ ∫ |𝑓𝑚|𝑞𝑑𝑥
𝐵4

} 

Therefore, we discover   

𝐽1 ≤ (2𝑁0𝜆∗)𝑞|𝐵1| ≤ 𝐶 {∫ |𝑢𝑚|𝑞𝑑𝑥
𝐵4

+ ∫ |𝑓𝑚|𝑞𝑑𝑥
𝐵4

} 

where 𝐶 = 𝐶(𝑛, 𝑝, 𝑞, 𝛬).                                                                                                          

Estimate of 𝐽2. From (3.2) we deduce that 

𝐽2 ≤ 𝐶휀𝑝 {∫ 𝜆𝑞−𝑝−1
∞

0

∫ |𝛻𝑢𝑚|𝑝𝑑𝑥𝑑𝜆
{𝑥∈𝐵2:|𝛻𝑢𝑚|>𝜆/4}

 

+
1

𝛿𝑞1
∫ 𝜆𝑞−𝑞1−1

∞

0

∫ |𝑓𝑚|𝑞1𝑑𝑥𝑑𝜆
{𝑥∈𝐵2:|𝑓𝑚|>𝛿𝜆/4}

} 

Recalling that  

∫ |𝑔|𝛽𝑑𝑥
ℝ𝑛

= (𝛽 − 𝛼) ∫ 𝜇𝛽−𝛼−1
∞

0

∫ 𝑔𝛼𝑑𝑥𝑑𝜇
{𝑥∈ℝ𝑛:|𝑔|>𝜇}

 

for 𝛽 > 𝛼 > 1, we have  

                                     𝐽2 ≤ 𝐶1휀𝑝 ∫ |𝛻𝑢𝑚|𝑞𝑑𝑥
𝐵2

+ 𝐶2휀𝑝 ∫ |𝑓𝑚|𝑞𝑑𝑥
𝐵2

     

where 𝐶1 = 𝐶1(𝑛, 𝑝, 𝑞, 𝛬) and 𝐶2 = 𝐶2(𝑛, 𝑝, 𝑞, 𝛬, 𝛿) .                                                       

Combining the estimates of 𝐽1 and 𝐽2 we obtain  

∫ |𝛻𝑢𝑚|𝑞𝑑𝑥
𝐵1

≤ 𝐶1휀𝑝 ∫ |𝛻𝑢𝑚|𝑞𝑑𝑥
𝐵2

+ 𝐶3 ∫ (|𝑢𝑚|𝑞 + |𝑓𝑚|𝑞)𝑑𝑥
𝐵4

 

where 𝐶3 = 𝐶3(𝑛, 𝑝, 𝑞, 𝛬, 𝛿, 휀). Selecting suitable 휀 such that 𝐶1휀𝑝 = 1/2, and 

reabsorbing at the right-hand side first integral in the inequality above by a covering 

and iteration argument (see [5], [7]), we have 

∫ |𝛻𝑢𝑚|𝑞𝑑𝑥
𝐵1

≤ 𝐶{∫ |𝑢𝑚|𝑞𝑑𝑥
𝐵4

+ ∫ |𝑓𝑚|𝑞𝑑𝑥
𝐵4

 

Then by a shift and scaling transform, we can finish the proof of the main result. 

Corollary (3.2):  
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Assume that 휀 > 0, let 𝑢𝑚 be a sequence of local weak solutions of (1.1). Then 

there exists a small 𝛿 = 𝛿(𝑛, 1 + 휀,
1+

, Λ, 𝑅) > 0 so that for each uniformly 

elliptic and (𝛿, 𝑅) -vanishing,𝐴, and for all 𝑓𝑚 with 𝑓𝑚 ∈ 𝐿
loc

1+𝜀

𝜀 (Ω;ℝ𝑛), we have  

∫ ∑ |𝛻𝑢𝑚|
1+

𝑠

𝑚=1

𝑑𝑥
𝐵𝑟(𝑥0)

 

≤ �̃�[∫ ∑ |𝑢𝑚|
1+

𝑠

𝑚=1

𝑑𝑥 + ∫ ∑ |𝑓𝑚|
1+

𝑠

𝑚=1

𝑑𝑥
𝐵4𝑟(𝑥0)𝐵4𝑟(𝑥0)

] 

           (120) where 𝐵4𝑟(𝑥0) ⊂ Ω and the constant �̃� is independent of 𝑢𝑚 and 𝑓𝑚. 

Proof: From Lemma (2.2), for any 𝜆 = 𝜆∗ + 휀 we have   

1/ (2𝑥 ∈ 𝐵𝑖
1: ∑ |𝛻𝑢𝑚|

𝑠

𝑚=1

> 2𝑁0(𝜆∗ + 휀))

1/2

= 1/ {𝑥 ∈ 𝐵𝑖
1: ∑ |𝛻(𝑢𝑚)𝜆∗+ |

𝑠

𝑚=1

> 2𝑁0}

1/2

 

≤ 1/{𝑥 ∈ 𝐵𝑖
1: ∑ |𝛻((𝑢𝑚)𝜆∗+ − 𝑣𝜆∗+

𝑖 )|

𝑠

𝑚=1

> 𝑁0}1/2 + |{𝑥 ∈ 𝐵𝑖
1: |𝛻𝑣𝜆∗+

𝑖 | > 𝑁0}| 

                            
= 1/{𝑥 ∈ 𝐵𝑖

1: ∑ |𝛻((𝑢𝑚)𝜆∗+ − 𝑣𝜆∗+
𝑖 )|𝑠

𝑚=1 > 𝑁0}1/2                                                

≤
1

𝑁0
1+ ∫ ∑ |𝛻((𝑢𝑚)𝜆∗+ − 𝑣𝜆∗+

𝑖 )|
1+

𝑠

𝑚=1

𝑑𝑧
𝐵𝑖

2
≤

휀1+ |𝐵𝑖
2|

𝑁0
1+ =

24𝑛휀1+ |𝐵𝑖
0|

𝑁0
1+ , 

which follows from Lemma (1.5) that 

1/{2𝑥 ∈ 𝐵𝑖
1: ∑ |𝛻𝑢𝑚|

𝑠

𝑚=1

> 2𝑁0(𝜆∗ + 휀)}1/2 

≤ �̃�휀1+ (
1

𝜆1+
∫ ∑ |𝛻𝑢𝑚|1+

𝑠

𝑚=1

𝑑𝑥
{𝑥∈𝐵𝑖

0:∑ |𝛻𝑢𝑚|𝑠
𝑚=1 >(𝜆∗+ )/4}

 

+
1

𝜆(
1+

)1𝛿(
1+

)1

∫ ∑ |𝑓𝑚|(
1+

)1

𝑠

𝑚=1

𝑑𝑥
{𝑥∈𝐵𝑖

0:∑ |𝑓𝑚|𝑠
𝑚=1 >𝛿(𝜆∗+ )/4}

) 

where �̃� = �̃�(𝑛, 1 + 휀, (
1+

)1, 𝛬). Recalling the fact that the balls 0{ }iB  are disjoint 

and  
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                               ∪
𝑖∈ℕ

𝐵𝑖
1 ⊃ 𝐸((𝜆∗ + 휀)) = {𝑥 ∈ 𝐵1: ∑ |𝛻𝑢𝑚|𝑠

𝑚=1 > (𝜆∗ + 휀)}                                                         

for any𝜆 = 𝜆∗ + 휀, and then summing up on i  in the inequality above, we have  

1/{2𝑥 ∈ 𝐵1: ∑ |𝛻𝑢𝑚|

𝑠

𝑚=1

> 2𝑁0(𝜆∗ + 휀)}1/2

 

≤ ∑ 1/{2𝑥 ∈ 𝐵𝑖
1: ∑ |𝛻𝑢𝑚|

𝑠

𝑚=1

> 2𝑁0(𝜆∗ + 휀)}1/2

𝑖

 

≤ �̃�휀1+ (
1

𝜆1+
∫ ∑ |𝛻𝑢𝑚|1+

𝑠

𝑚=1

𝑑𝑥
{𝑥∈𝐵2:∑ |𝛻𝑢𝑚|𝑠

𝑚=1 >(𝜆∗+ )/4}  

1

𝜆(
1+

)1𝛿(
1+

)1

∫ ∑ |𝑓𝑚|(
1+

)1

𝑠

𝑚=1

𝑑𝑥
{𝑥∈𝐵2:∑ |𝑓𝑚|𝑠

𝑚=1 >𝛿(𝜆∗+ )/4}

)        (3.3) 

  for any     . Recalling the standard argument of measure theory, we compute  

∫ ∑ |𝛻𝑢𝑚|(
1+

)

𝑠

𝑚=1

𝑑𝑧
𝐵1  

= (
1 + 휀

휀
) ∫ 𝜇(

1+
)−11/{2𝑥 ∈ 𝐵1: ∑ |𝛻𝑢𝑚|

𝑠

𝑚=1

> 𝜇}1/2𝑑𝜇
∞

0

 

= (
1 + 휀

휀
) ∫ 𝜇(

1+
)−11/{2𝑥 ∈ 𝐵1: ∑ |𝛻𝑢𝑚|

𝑠

𝑚=1

> 𝜇}1/2𝑑𝜇
2𝑁0𝜆∗

0  

              

+(
1+

) ∫ 𝜇(
1+𝜀

𝜀
)−11/{2𝑥 ∈ 𝐵1: ∑ |𝛻𝑢𝑚|𝑠

𝑚=1 > 𝜇}1/2𝑑𝜇
∞

2𝑁0𝜆∗
                                      

= (
1 + 휀

휀
) ∫ 𝜇(

1+
)−11/{2𝑥 ∈ 𝐵1: ∑ |𝛻𝑢𝑚|

𝑠

𝑚=1

> 𝜇}1/2𝑑𝜇
2𝑁0𝜆∗

0  

+(
1 + 휀

휀
) ∫ (2𝑁0(𝜆∗ + 휀))

(
1+

)−1
𝐾. 𝑑(2𝑁0(𝜆∗ + 휀)}

∞

𝜆∗

 

where, 
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𝐾 = (1/2𝑥 ∈ 𝐵1: ∑ |𝛻𝑢𝑚|

𝑠

𝑚=1

> 2𝑁0(𝜆∗ + 휀))

1/2

 

=: 𝐽1 + 𝐽2.                                                                                                                   

Estimate of 𝐽1. From the definitions of 𝜆∗ and 𝜆0 we deduce that 

𝜆∗

(
1+

)
= 26𝑛(

1+
)/(1+ )𝜆0

(
1+

)
≤ �̃�{(∫ ∑ |𝛻𝑢𝑚|(1+ )

𝑠

𝑚=1

𝑑𝑥
𝐵2

)(
1+

)/(1+ )
 

+
1

𝛿(
1+

)
(∫ ∑ |𝑓𝑚|(

1+
)1

𝑠

𝑚=1

𝑑𝑥
𝐵2

)(
1+

)/(
1+

)1} 

which follows from Lemma (1.3) and 𝐻ö𝑙𝑑𝑒𝑟’𝑠 inequality that  

𝜆∗

(
1+

)
≤ �̃�{(∫ ∑ |𝑢𝑚|(1+ )

𝑠

𝑚=1

𝑑𝑥
𝐵4

+ ∫ ∑ |𝑓𝑚|(1+ )

𝑠

𝑚=1

𝑑𝑥
𝐵4

)(
1+

)/(1+ )

 

+
1

𝛿(
1+

)
(∫ ∑ |𝑓𝑚|(

1+
)1

𝑠

𝑚=1

𝑑𝑥
𝐵2

)(
1+

)/(
1+

)1} 

≤ �̃�{(∫ ∑ |𝑢𝑚|(1+ )

𝑠

𝑚=1

𝑑𝑥
𝐵4

)(
1+

)/(1+ ) + (∫ ∑ |𝑓𝑚|(1+ )

𝑠

𝑚=1

𝑑𝑥
𝐵4

)(
1+

)/(1+ )
 

+
1

𝛿(
1+

)
∫ ∑ |𝑓𝑚|(

1+
)

𝑠

𝑚=1

𝑑𝑥
𝐵2

} 

≤ �̃�{∫ ∑ |𝑢𝑚|(
1+

)

𝑠

𝑚=1

𝑑𝑥
𝐵4

+ ∫ ∑ |𝑓𝑚|(
1+

)

𝑠

𝑚=1

𝑑𝑥
𝐵4

} 

Therefore, we discover   

𝐽1 ≤ (2𝑁0𝜆∗)(
1+

)|𝐵1| ≤ �̃�{∫ ∑ |𝑢𝑚|(
1+

)

𝑠

𝑚=1

𝑑𝑥
𝐵4

+ ∫ ∑ |𝑓𝑚|(
1+

)

𝑠

𝑚=1

𝑑𝑥
𝐵4

} 

 where �̃� = �̃�(𝑛, 1 + 휀, (
1+

), 𝛬).                                                                                                          

Estimate of 𝐽2. From (3.3) we deduce that  

𝐽2 ≤ 
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�̃�휀(1+ ){∫ (𝜆∗ + 휀)(
1+

)−(1+ )−1
∞

0

∫ ∑ |𝛻𝑢𝑚|(1+ )

𝑠

𝑚=1

𝑑𝑥𝑑(𝜆∗ + 휀)
{𝑥∈𝐵2:∑ |𝛻𝑢𝑚|𝑠

𝑚=1 >(𝜆∗+ )/4}  

+
1

𝛿(
1+

)1

∫ (𝜆∗ + 휀)(
1+

)−(
1+

)1−1
∞

0

∫ ∑ |𝑓𝑚|(
1+

)1

𝑠

𝑚=1

𝑑𝑥𝑑(𝜆∗ + 휀)
{𝑥∈𝐵2:∑ |𝑓𝑚|𝑠

𝑚=1 >𝛿(𝜆∗+ )/4}

} 

Recalling that 

∫ |𝑔|𝛽𝑑𝑥
ℝ𝑛

= (𝛽 − 𝛼) ∫ 𝜇𝛽−𝛼−1
∞

0

∫ 𝑔𝛼𝑑𝑥𝑑𝜇
{𝑥∈ℝ𝑛:|𝑔|>𝜇}

 

for 𝛽 > 𝛼 > 1, we have  

𝐽2 ≤ �̃�1휀(1+ ) ∫ ∑ |𝛻𝑢𝑚|(
1+

)

𝑠

𝑚=1

𝑑𝑥
𝐵2

+ �̃�2휀(1+ ) ∫ ∑ |𝑓𝑚|(
1+

)

𝑠

𝑚=1

𝑑𝑥
𝐵2

 

where �̃�1 = �̃�1(𝑛, 1 + 휀, (
1+

), 𝛬) and �̃�2 = �̃�2(𝑛, 1 + 휀, (
1+

), 𝛬) .                                                       

Combining the estimates of 𝐽1 and 𝐽2 we obtain                                     

∫ ∑ |𝛻𝑢𝑚|(
1+

)

𝑠

𝑚=1

𝑑𝑥
𝐵1

≤ �̃�1휀(1+ ) ∫ ∑ |𝛻𝑢𝑚|(
1+

)

𝑠

𝑚=1

𝑑𝑥
𝐵2

 

+ �̃�3 ∫ ∑ (|𝑢𝑚|(
1+

) + |𝑓𝑚|(
1+

))

𝑠

𝑚=1

𝑑𝑥
𝐵4

 

where �̃�3 = �̃�3(𝑛, 1 + 휀, (
1+

), 𝛬, 𝛿, 휀). Selecting suitable 휀 such that �̃�1휀(1+ ) =

1/2, and reabsorbing at the right-hand side first integral in the inequality above by a 

covering and iteration argument, we have 

∫ ∑ |𝛻𝑢𝑚|(
1+

)

𝑠

𝑚=1

𝑑𝑥
𝐵1

≤ �̃�{∫ ∑ |𝑢𝑚|(
1+

)

𝑠

𝑚=1

𝑑𝑥
𝐵4

+ ∫ ∑ |𝑓𝑚|(
1+

)

𝑠

𝑚=1

𝑑𝑥
𝐵4

 

Then by a shift and scaling transform, we can finish the proof. 
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